MESA Day Contest Rules
2019-2020

Prosthetic Arm

LEVEL: Grades 6 and 7/8

TYPE OF CONTEST: Team

COMPOSITION OF TEAM: 2-3 students per team

NUMBER OF STUDENTS: Preliminary – As determined by your local MESA Center
Regional – 1 for 6th Grade; 1 for 7th/8th Grade per Center

SPONSOR: Ben Louie, Associate Director, USC MSP
Catherine Douglas, Associate Director, UCLA MSP

OVERVIEW: Students will design, construct, and operate a simulated prosthetic arm that can accurately throw as many bean bags into the Target Zone as fast as possible. Participation logistics, limits, and competition facilities may vary by host site. Advisors and students are responsible for verifying this information with their center director.

An engineering lab book is a required component of this competition. The purpose of the Engineering Lab Book is for students to closely follow the practices of an engineer in the completion of their MESA Day project. The Engineering Lab Book will encourage students to take a purposeful and sustained approached to building their devices. MESA projects are not designed to be completed in a single class period or day, but to be the result of thoughtful research, planning, analysis and evaluation. The notebook should provide a written record of the thought and insight that a student put into their project, from initial ideas to the final completed project.

MATERIALS: For the device, all materials are legal with the exception of hazardous materials. There are no cost limitations; however, awards will be given to the most innovative designs utilizing low-cost materials.

For the Engineering Lab Book, there are three format options for lab book submittals: Electronic Lab Book, Printed/Written Pages or Standard Lab Book. Please check with you local center director for the format required for your preliminary event. Electronic submissions will be required at the Regional/State level.

The Host Center will provide the following:
• 12 – reinforced bean bags (Oriental Trading Item #: 61/4000 or similar)
• 1 – Homer All-Purpose Bucket (Home Depot Model # 05GLHD2 or similar)
• “Skee Ball” Target Zone taped to floor
GENERAL RULES:
1) The students’ full name, school name, grade and MESA Center must be clearly labeled on the device. A 10% penalty in the score will be assessed for failing to properly label.
2) The device must have at least two artificial fingers. These fingers:
   a. MUST open and close. At least two fingers are required to move.
   b. MUST grab and release the bean bag. Team member may NOT use any other part of the prosthesis or parts of his/her own hand, wrist or arm to grab and release the bean bag.
3) The device must NOT be controlled or operated by either of the team member’s fingers, hands, or wrists.
4) In order to simulate an amputated arm, participating team member must have his/her wrist, hand, and fingers immobilized during the competition. The team will determine own method for immobilization.
5) The device (i.e. artificial fingers) may only grab and release ONE bean bag at a time.
   a. A bean bag that is dropped outside the bucket inside the boundaries of the Working Area must be grabbed by the artificial fingers and released back into the bucket before attempting to throw the dropped bean bag.
   b. Bean bags outside of the Working Area are out of play and may NOT be retrieved.
6) No part of the device may cross the Launch Line when throwing a bean bag.
7) During the trial, the team member may use his/her unencumbered hand to hold and move the bucket, but the bottom must remain in contact with the floor and within the defined Working Area at all times.
8) Lab books are meant to clearly demonstrate and illustrate evidence of the application of the Engineering Design Process in the MESA project.

SCORING:
1) Team points-to-time ratio = total points divided by trial time in seconds (00.00)
   a. Points for each scoring zone (maximum of 1200 points)
      i. 30 point zone = circle 75 cm diameter (see diagram below)
      ii. 60 point zone = circle 30 cm diameter
      iii. 80 point zone = circle 25 cm diameter
      iv. 100 point zone = circle 15 cm diameter
   b. Time needed to complete trial (maximum of 60.00 seconds)
2) Maximum of 4 points awarded for two sketches and materials table
3) Final Score = best points-to-time ratio plus (+) sketches/table points
   a. The best points-to-time ratio of the two trials will be used
4) A deduction of 20% of the final score will be assessed for an incomplete engineering lab book and a 50% deduction will be assessed for a missing engineering lab book.

AWARDS:
- Medals will be awarded for 1st, 2nd and 3rd place based on the greatest Grand Total Score.
- Ribbons will be awarded for Innovative Engineering Design utilizing low-cost materials.
- Only teams placing in the Total Score category will advance to Regional MESA Day.

ATTACHMENTS/APPENDIX:
- Competition Area Specifications
- Equipment
- Inspection & Score Sheet for Prosthetic Arm
- Engineering Lab Book Requirement Rubric
- Skee Ball Target Zone
**Competition Area Specifications**

- A 2 meter square will be marked as the *Working Area*. Only the team member actively participating during the task will be permitted inside the *Working Area*.
- One edge will be designated the *Launch Line*.
- The *Target Zone* is the “Skee Ball” setup indicated in the diagram. Target Zone diagram is attached to rules.

**Equipment**

- 12 – reinforce ban bags (recommend additional bean bags as replacements)
  [www.orientaltrading.com](http://www.orientaltrading.com) (*Reinforced Bean Bags Item #: 61/4000*)
- 1 – Plastic Homer’s All-Purpose Bucket (Model # 05GLHD2 or equivalent)
- “Skee Ball” *Target Zone* used in previous year competition (see attached target diagram for printing)
- Measuring tape
- Masking tape to outline the *Working Area*
- 1 stop watch to record trial time

**JUDGING:**

1) Devices will be checked for specifications prior to the start of the competition. If devices are disqualified during the specification check, design changes will not be allowed.
2) Repairs are only allowed with duplicate parts and materials.
3) Each device will be allowed two (2) non-consecutive trials.
4) At the beginning of each trial, team member must demonstrate immobilization (see Rule 4).
5) Each device must be ready when called or team will forfeit that trial.
6) Each team will be given up to 60 seconds to prepare, attach, and demonstrate prosthetic arm, to place and prepare bean bags inside the bucket, and to place bucket anywhere inside *Working Area*. If at the end of the 60 seconds the team is not ready, the trial will be declared a mistrial and this process will be repeated for the second trial.
7) The judge will give the start order and begin the timer.
8) The team member will enter the *Working Area* and will have a maximum of 1 minute (60 seconds) to grab and release each of the 12 bean bags. The judge will notify the team when 30 seconds, 20 seconds, and 10 seconds remain.
9) The judge(s) will count the number of bean bags inside each scoring zone at the end of the trial.
   a. Points will be given for bean bags left in the scoring zone at the end of the trial.
   b. NO points will be given for bean bags landing inside the Target Zone initially but subsequently pushed out of the score zone at the end of the trial.
10) The judge will stop the timer when the last bean bag has been thrown. Or, the judge will call “time” after one minute has passed.
   a. The judge will record the time needed to complete the trial.
ENGINEERING NOTEBOOK

The Engineering Lab Book must be properly labeled (names, school, center, grade level, etc.) and contain and cover the following sections using the template provided:

1. **IDENTIFY THE PROBLEM** (at least 2 sentences for each question)
   State what is the challenge being worked on? What are the limits/constraints? How do you think you can you solve it?

2. **EXPLORE**
   Find out what others have done (research). Clearly list at least 5 sources (web pages, books, etc.). Identify (cite) and describe them.

3. **DESIGN**
   Brainstorm ideas (at least 3 ideas) and record them. Each idea should be represented by a sketch or drawing.
   
   i. One sketch should be of the anatomy of the human arm and the other sketches of the device. These sketches MUST be hand-drawn or student’s original computer-generated. Sketches should indicate a progression in the thinking and design of the device, and be detailed. Sketches must be no smaller than one page, and can either be drawn on the lab book page directly or attached.
   
   ii. The sketch of the anatomy of the human arm AND the sketches of the device should include the following eight required and correctly labeled structures:
      - Radius/Ulna
      - Flexor Carpi Ulnaris
      - Radiocarpal Joint
      - Carpus
      - Carpometacarpal Joint
      - Metacarpus
      - Phalanges
   
   Select one idea and create a plan (at least 5 sentences) to build a prototype from. Generate a list of materials for your prototype. Table should list all materials utilized for the above eight required structures.

4. **CREATE**
   Using your plan, build your prototype. Include a picture of the actual project prototype.

5. **TRY IT OUT**
   Test your idea/prototype. Attempt at least 3 trials/attempts of your test. Measure the results of your test (by project performance criteria). Provide evidence of the use and application of at least 2 appropriate mathematical concepts in your tests. This section must include the calculations for both the following:
   - Calculate how much work is done by the artificial fingers in grabbing an object by using \( W = Fd \).
   - Calculate the grab and release speed of the artificial fingers by using \( d = rt \).

6. **MAKE IT BETTER**
   Describe how you can make the project better and what modifications you will be making (at least 5 ways you can improve project). Build and prepare competition ready project. Include a picture.

Sample Materials Table

<table>
<thead>
<tr>
<th>Structure</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radius/Ulna</td>
<td>Mailing Tube</td>
</tr>
<tr>
<td>Flexor Carpi Ulnaris</td>
<td>Bungee cord</td>
</tr>
<tr>
<td>Radiocarpal Joint</td>
<td>Hinge</td>
</tr>
</tbody>
</table>
Student Names: ___________________________ Grade: 6 or 7/8 (circle one)
School: ___________________________ MESA Center: ___________________________

### INSPECTION LIST:
- Device includes at least two artificial fingers that open and close (at least 2 fingers are required to move) .................................................................................................................. ☐ ☐
- Fingers grab and release bean bags .................................................................................................................................................................................. ☐ ☐
- Device not controlled by fingers, hands, or wrists of either hand ................................................................................................................................. ☐ ☐
- Team has demonstrated immobilization of the fingers, hand, and wrist ....................................................................................................................... ☐ ☐
- Device labeled properly (students’ full name, school name, grade and MESA Center) ................................................................................................. ☐ ☐

Innovative Engineering Design (ranking – 1, 2, 3, etc.): ____________

### SKETCHES AND MATERIALS TABLE

<table>
<thead>
<tr>
<th>Structure</th>
<th>Material Listed</th>
<th>Sketch of Arm Anatomy</th>
<th>Sketch of Final Device</th>
<th>Sub Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.1 points</td>
<td>Present 0.1 points</td>
<td>Correctly Labeled 0.1 points</td>
<td></td>
</tr>
<tr>
<td>Radius/Ulna</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flexor Carpi Ulnaris</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radiocarpal Joint</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carpus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carpometacarpal Joint</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metacarpus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phalanges</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tendons</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL (maximum 4 points)

### TRIAL 1

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td># Bean Bags</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Zone Points</td>
<td>=</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(zone pts x # bean bags)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trial Time (00.00 secs)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zone Points/Time Ratio</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mistrial Reason:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### TRIAL 2

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td># Bean Bags</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Zone Points</td>
<td>=</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(zone pts x # bean bags)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trial Time (00.00 secs)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zone Points/Time Ratio</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mistrial Reason:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Final Score** (best of two trials + Sketches/Materials Table Points) ____________

Device Labeling Penalty (10% of Final Score) ____________

Engineering Lab Book Penalty (20% or 50 % of Final Score) ____________

MESA DAY CONTEST RULES 2019-20
Master Set
©University of California Regents
These rules are for the internal use of MESA staff and teachers only and should not be forwarded or used outside of MESA.
### MESA DAY 2018-2019

**Lab Book Requirement Rubric** *(criteria may vary by individual competition)*

#### Project:
Please use this rubric to assess lab book entries. An incomplete lab book (i.e., missing 1 to 2 specified criteria) will lead to a 20% deduction from the total project score. A missing lab book (i.e., not submitted OR missing 3 or more specified criteria) will lead to a 50% deduction from the total project score and will make team ineligible to place.

#### TEAM MEMBER NAMES:

SCHOOL: ___________________________ CENTER: ___________________________

LEVEL (circle one): 6th 7/8th 9/10th 11/12th

<table>
<thead>
<tr>
<th>Section</th>
<th>YES</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Identify the Need (at least 2 sentences for each)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>State what is the challenge being worked on? What are the limits/constraints? How do you think you can you solve it.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Explore</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conducting research (listing 5 cited/referenced sources), gathering materials, try using materials</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Design</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brainstorming ideas (at least 3 iterations) each represented by a picture, sketch or drawing. Creating a plan for selected idea (at least 5 sentences). A list of materials for the prototype.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Create</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Building a prototype. Describing the building of the prototype (at least 5 sentences). Including a final picture of the project.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Try it Out</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Testing idea/prototype. Attempting at least 3 trials/attempts. Measuring each trial result (by specific performance criteria like distance traveled, time, etc.). Providing evidence of the use and application of at least 2 appropriate mathematical concepts in the tests.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Make Better</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evaluate results. List at least five ways project can be improved</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**TOTAL**

Lab Book Complete *(mark with X)*

Is this considered an **incomplete** note book (circle one)? NO YES (-20%)

Is this considered a **missing** lab book? (circle one) NO YES (-50%)

---

MESA DAY CONTEST RULES 2019-20
Master Set
©University of California Regents
These rules are for the internal use of MESA staff and teachers only and should not be forwarded or used outside of MESA.