
UNIT

3
Ch. 1 1 2 3 4 5 6 7 8 9 10

Big Questions

Why do we need algorithms?

How is designing an algorithm to solve a problem different from

other kinds of problem solving?

How do you design a solution for a problem so that is

programmable?

What does it mean to be a "creative" programmer?

How do programmers collaborate?

Enduring Understandings

1.1 Creative development can be an essential process for

creating computational artifacts.

1.2 Computing enables people to use creative development

processes to create computational artifacts for creative

expression or to solve a problem.

2.2 Multiple levels of abstraction are used to write programs or

create other computational artifacts

4.1 Algorithms are precise sequences of instructions for

processes that can be executed by a computer and are

implemented using programming languages.

5.1 Programs can be developed for creative expression, to

satisfy personal curiosity, to create new knowledge, or to solve

problems (to help people, organizations, or society).

5.2 People write programs to execute algorithms.

5.3 Programming is facilitated by appropriate abstractions.

Unit 3 - Algorithms and Programming
This unit introduces the foundational concepts of computer programming, which unlocks the ability to make rich, interactive apps. This course

uses JavaScript as the programming language, and App Lab as the programming environment to build apps, but the concepts learned in

these lessons span all programming languages and tools.

Some of the lessons that follow have worksheets and student guides associated with activities. Those worksheets are listed in the relevant

lesson plan, or you can check out all unit 3 student-facing activity guides here.

Chapter 1: Programming Languages and Algorithms

Week 1

Lesson 1: The Need for Programming Languages
Students write instructions for building a small arrangement of LEGO® blocks and trade
with a classmate to see if they can follow them to construct the same arrangement. The
lesson highlights the inherent ambiguities of human language deriving the need for a
well-defined programming language which leaves no room for interpretation.

Lesson 2: The Need for Algorithms
Students develop (and are eventually provided with) commands for a "Human Machine
Language" designed to perform operations on playing cards. The lesson highlights the
connection between programming and algorithms by showing that different techniques
for solving the same problem can be expressed in the language.

http://bit.ly/csp-u3
file:///csp/unit3/
file:///csp/unit3/
file:///csp/unit3/
https://www.allbusiness.com/barrons_dictionary/dictionary-assembly-language-4942588-1.html
file:///csp/unit3/
file:///csp/unit3/
file:///csp/unit3/
https://code.org/curriculum/docs/csp/U3/L5/6a.png
https://code.org/curriculum/docs/csp/U3/L6/2.png
https://code.org/curriculum/docs/csp/U3L06-assessment.png
file:///csp/unit3/
file:///csp/unit3/
file:///csp/unit3/
https://code.org/curriculum/docs/csp/U3/L9/image08.png
https://code.org/curriculum/docs/csp/U3/L9/image00.png
file:///csp/unit3/

Lesson 3: Creativity in Algorithms
Concept Invention | Unplugged | Algorithms

Students continue to work with the “Human Machine Language” - with an added SWAP
command - to design an algorithm to move the minimum card to the front of the list.
Students may design more algorithms for other problems and challenges provided.

Week 2

Lesson 4: Using Simple Commands
Turtle Programming

Students use the App Lab programming environment for the first time and become acquainted
with the turtle. The chief problem is to find the most “efficient” way to draw an image of a 3x3
grid using a limited set of only 4 commands.

Lesson 5: Creating Functions
Turtle Programming

Students learn to define and call their own procedures (or “functions”) in order to create
and give a name to a group of commands for easy and repeated use in their code.
Named procedures are a form of abstraction that enable the programmer to reduce
complexity by removing details and generalizing functionality.

Lesson 6: Functions and Top-Down Design
Turtle Programming

Students learn about top-down design strategies for solving more complex programming problems
by breaking the problem down into small parts that can be named and represented as functions.
The code in the resulting program should read more like a description of how to solve the problem
than like raw code.

Week 3

Lesson 7: APIs and Using Functions with Parameters
Students read and use App Lab’s API documentation to learn about new turtle commands that
they must use to complete a series of drawing puzzles.

Lesson 8: Creating Functions with Parameters
Students practice using and creating functions with parameters by making a series of
modifications to a program that creates an “Under the Sea” drawing. Students add
parameters to generalize behavior that can vary, and make use of App Lab's
randomNumber function add variation to the scene.

Lesson 9: Looping and Random Numbers
Turtle Programming

Students learn to use a simplified version of a for loop to add repetition to their code
(i.e. repeat x times loop). Calling functions repeatedly with a loop combined with
random numbers enables students to create more complex and varied drawings for
digital scenes.

Week 4

Lesson 10: Practice PT - Design a Digital Scene
Turtle Programming

Students work in groups of 3 or 4 to design and write the code for a program that draws
a digital scene of their choosing. Students break the scene down into small parts and
divvy up the code writing amongst the team. Each individual's code is combined at the
end to create the full scene. The project concludes with written reflection questions
similar to those students will see on the AP® Performance Tasks.

Chapter Commentary
Unit 3 Chapter 1 - What’s the story?
The underlying story to this chapter is that programming is a creative endeavor, and a form of personal expression about how to get a

machine to solve problems. The first three lessons we use unplugged activities to highlight the connections between algorithms, human

language, and programming languages. The remainder of the unit we spend writing programs in App Lab using the classic “turtle”, or an

arrow that you can control with code to create drawings. While students will learn the basic syntax of JavaScript, the main focus is on top-

down design and problem solving strategies.

In the unplugged activities we derive the need for programming languages first, and then focus on how to express algorithms using them.

Algorithms are building blocks for solving computational problems. You can design them to solve individual small tasks and then combine
them and recombine them to solve others. Furthermore, there is a good deal of creativity involved in designing algorithmic solutions to

problems. It may come as a surprise that, given only a few machine instructions and a simple problem, two people may write code to solve it in

completely different ways. This might be because their overall approach (algorithm) is different or simply because they went about writing code

to express it differently.

When we shift to solving problems with code in App Lab, we hold the context of the problem (solving turtle drawing problems) constant in

order to focus on problem-solving behaviors and techniques students can use with JavaScript. In particular we want to emphasize
managing complexity with abstraction. This entails breaking a problem down into its constituent parts, writing functions to solve each part

individually, and then combining them together to solve the overall problem. Students should be very familiar with the general ideas behind

“top-down” design from the previous units of study. Just like figuring out a way to encode a complex piece of information in binary, computer

programs can be thought of as complex systems that can be broken down repeatedly to gain insight into the subsystems that make it up.

Our approach to the Content
To call programming a creative form of personal expression sounds counterintuitive to a lot of beginners. Our hope is that this fact resonates

with new students since we see it as illustrating our teaching philosophy of computer-science-as-a-liberal-art. The mindset is expressed

eloquently by Donald Knuth: “Instead of imagining that our main task is to instruct a computer what to do, let us concentrate rather on

explaining to human beings what we want a computer to do.” It is with this sentiment in mind that we start the unit by doing just that - writing

out algorithms to be executed by hand to gain insights into what makes programming challenging and creative. The unplugged activities

reveal why programming languages need to exist, and foreshadow some of the ideas that come later in this unit and throughout the course.

They serve as a common point of reference that many future lessons can be tied back to.

Our sequence of lessons to introduce programming is a little unconventional, especially our choice to place early emphasis on writing

functions and procedural abstraction, but there is a method to the madness. A major skill that programmers have is the ability to look at a

problem and know how to break it down into smaller and smaller parts that can be more easily programmed into reusable procedures. In

JavaScript, procedures are called “functions”, and the generic term for encapsulating the solution to a problem in a named procedure is called

“procedural abstraction.” We focus on functions and procedural abstraction for three main reasons: (1) we want to keep the focus on

problem solving and collaboration rather than getting lost in syntax, (2) we are reinforcing the enduring understandings that multiple levels of

abstraction are used to write program, and (3) just to be practical, the interactive event-driven apps we make in Unit 5 require a solid

foundation in writing functions.

If you are interested in licensing Code.org materials for commercial purposes, contact us.

http://creativecommons.org/
file://code.org/contact

UNIT

3
Ch. 1 1 2 3 4 5 6 7 8 9 10

Lesson 1: The Need for Programming Languages
Overview
At the beginning of a new unit we jump right into an activity - building a small

arrangement of LEGO® blocks and then creating text instructions a classmate

could follow to construct the same arrangement. Groups will then trade

instructions to see if they were clear enough to allow reconstruction of the

original arrangement. The wrap-up discussion is used to highlight the inherent

ambiguities of human language and call out the need for the creation of a

programming language which leaves no room for interpretation.

Purpose
This is the first in a 3-lesson sequence in which we attempt to make connections

between programming languages, the creative act of programming, and

algorithms.

The main activity is a derivative of a classic strategy for beginning to learn about

programming - writing precise instructions for another person to do just about

anything - making a peanut butter and jelly sandwich, a simple line drawing, an

arrangement of objects - is challenging. Human language is fraught with

ambiguities and assumptions that machines (computers) simply cannot handle.

Thus, the first step we take is to establish the need for programming languages.

Writing down a precise set of instructions to build a small lego structure, as we

do in this lesson, is nearly impossible…unless you can agree on certain

language constructs ahead of time, and how they will be interpreted. The main
purpose of the lesson is to expose why programming languages are
necessary, and how they come into being.

When you formalize language or commands that describe actions you are

making a kind of code. This is also necessary for computers, which are simply

machines that can perform a number of different tasks. In order to write

instructions for them to do something you must agree on the “code” and each

action must have a precise, unambiguous meaning. This is a programming
language. Novices might think that a programming language looks like an

archaic, impenetrable mass of abstract word groupings, but all programming

languages are derived from the human need to concisely give instructions to a

machine.

Agenda
Getting Started (2 mins)

Welcome to Unit 3!
Activity (25 mins)

LEGO Instructions Activity
Wrap Up (15 mins)

Discussion: Why is writing instructions hard?
The Need for Programming Languages

Assessment
Extended Learning

Objectives
Students will be able to:

Assess the clarity of a set of instructions expressed

in human language.

Create a set of instructions in human language for

building a simple LEGO block arrangement.

Identify connections between the ability to program

and the ability to solve problems.

Describe the ambiguities inherent in human

language and the ways programming languages

seek to remove those ambiguities.

Preparation
Blocks for the class (~5 per team/student)

Paper for recording instructions

Links
For the Students

You Should Learn to Program: Christian Genco
at TEDxSMU - Video

LEGO Instructions - Activity Guide (PDF | DOCX)

Building Blocks of Drawing - Activity Guide (PDF |

DOCX)

Unit 3 on Code Studio

https://www.youtube.com/watch?v=xfBWk4nw440
https://docs.google.com/document/d/1cd4ebtVpHnJdN-eVuko5wJPwoO1rq7lVw6V-JNUxZ4Y/
https://docs.google.com/document/d/1cd4ebtVpHnJdN-eVuko5wJPwoO1rq7lVw6V-JNUxZ4Y/export?format=pdf
https://docs.google.com/document/d/1cd4ebtVpHnJdN-eVuko5wJPwoO1rq7lVw6V-JNUxZ4Y/export?format=doc
https://docs.google.com/document/d/120alBIYfPoSG85HMZLKNp5F60dAdGHd5f9UsGdi8a4o/
https://docs.google.com/document/d/120alBIYfPoSG85HMZLKNp5F60dAdGHd5f9UsGdi8a4o/export?format=pdf
https://docs.google.com/document/d/120alBIYfPoSG85HMZLKNp5F60dAdGHd5f9UsGdi8a4o/export?format=doc
https://studio.code.org/s/csp3

 Warm Goal

This is the beginning of a new unit. Set the tone that as a class
we're embarking on a new adventure - programming - and get right
into the activity. Ask students to dive into working on the problem,
and assure them we'll explain things at the end.

 Teaching Tip

To make things interesting, strike a balance between all blocks
being different colors and all blocks being the same. This forces
students to be precise in identifying which block should be used in
each step.

 Teaching Tip

Students may be eager to program, but recognize that the course
is about "principles" of programming, and we want to establish
some of the thinking habits that people who are "good" at
programming seem to have "naturally." There is nothing natural
about it - these ways of thinking, these insights, are learned and
practiced. And this thikning capabilities start here.

Teaching Guide
Getting Started (2 mins)

Welcome to Unit 3!
 Remarks

Welcome to Unit 3 - Introduction to Programming

This unit is an introduction to the principles of

programming.

As you'll see one of the most important things you can do in

programming starts well before you write any code. It's about

how you think.

We're going to launch into an activity right now that reveals

an important principle of programming.

Try your best, and we'll discuss at the end.

Activity (25 mins)

Distribute: Activity Guide - LEGO Instructions - Activity
Guide (Non-LEGO Alternative: Building Blocks of Drawing - Activity Guide)

Students can record their instructions on a plain sheet of paper, poster paper, piece of construction paper, etc.

Students are encourged to work in groups of 2 or 3 (but can work alone)

Each group should be given 5-6 LEGO® blocks.

LEGO Instructions Activity
Below are the steps students are asked to complete in the activity

guide.

Create a simple LEGO arrangement (and record it)

Groups should create an arrangement of their blocks in

accordance with the following rules:

All pieces must be connected in a single arrangement.

Color matters: the final arrangement must be absolutely identical to the original.

Groups should record their arrangement by taking a picture or creating a simple drawing.

Write instructions for building your arrangement

On a separate sheet of paper, each group should write out a set of instructions, that another group could use to create the same

arrangement. A couple of guidelines are below:

You may only use words when creating these instructions. In particular, you may not include your image or draw images of your own.

Try to make your instructions as clear as possible. Your classmates are about to use them!

Trade instructions and attempt to follow them

Groups should disassemble their arrangements, place their instructions next to the pieces, and hide their image or drawing of the

arrangement somewhere it cannot be seen. Have groups move around the room to other groups’ instructions and try to follow them to build

the desired arrangements. Have the original group check whether the solutions are correct or let groups check their solutions themselves by

looking at the recorded image of the arrangement afterwards. Allow groups an opportunity to try a few of their classmates’ instructions

before reconvening.

Wrap Up (15 mins)

Discussion: Why is writing instructions hard?
Bring the class back together to reflect upon the following prompts or similar ones of your own creation. You may wish for students to record

their answers in writing.

https://docs.google.com/document/d/1cd4ebtVpHnJdN-eVuko5wJPwoO1rq7lVw6V-JNUxZ4Y/
https://docs.google.com/document/d/120alBIYfPoSG85HMZLKNp5F60dAdGHd5f9UsGdi8a4o/

 Discussion Goal

Highlight the fact that ambiguity in human language led to

issues or at least difficulty in creating the arrangements.

Motivate the need to create a well-defined set of commands

that all parties can agree upon for expressing the steps of a

task, or in other words, a programming language.

 Teaching Tips

Students may say things like “We could be really careful about our
language” or “We could include more detail.” These are entirely
true, but emphasize that if there’s room for interpretation then we
can’t be certain about our results. Move towards the solution of
creating a new language (a programming language!) in which we
have strictly and precisely defined exactly what every word means.
This is different from our normal human language, but necessary if
we want perfect clarity in expressing instructions.

Prompts:

"Were you always able to create the intended
arrangement? Were your instructions as clear as you
thought?"

"Why do you think we are running into these
miscommunications? Is it really the fault of your
classmates or is something else going on?"

In the discussion of these prompts, ask students to mention

instances where language was ambiguous or detail was not as great as students thought. Establish the fact that even when we are very

careful, the very nature of human language means there is typically some room for interpretation. In day-to-day life that’s fine, but when

expressing algorithms we need to do better.

Brainstorm: Transition the conversation to a more proactive response to the day’s activity. Ask students to brainstorm ways to overcome the

ambiguity of human language.

Prompt:

If we were going to change human language to improve our odds of succeeding at this activity, what types of changes would we need to

make?

Let students discuss at tables before again sharing with the class. Key ideas to bring out are:

So long as there are multiple ways to interpret language, we cannot have perfect precision.

If we rigorously define the meaning of each command we use, then we can avoid misinterpretation and confidently express algorithms.

This is different from the way we normally think and talk, and it might even take a while to get comfortable with communicating in this way.

The Need for Programming Languages
 Remarks

Today we saw how human language may not always be precise
enough to express algorithms, even for something as simple as
building a small LEGO arrangement. The improvements you
have suggested actually create a new kind of language for
expressing algorithms, which we as computer scientists call a
programming language. In the coming unit we are going to
learn a lot more about how we can use programming languages
to express our ideas as algorithms, build new things, and solve
problems.

Assessment

Prompts:

Consider the algorithm you designed for today’s activity. Identify two instances where there may be multiple ways to interpret your

instructions and suggest improvements that could be made to improve their clarity.

Describe the features of a programming language that make it different from the language you are used to using in everyday life. Explain

why a programming language must be created in this way.

Extended Learning

Ask students to rigorously define a small set of commands that could be used to build any arrangement of LEGO blocks. For example:

“rotate”, “attach”, “detach”, “move”, etc. Feel free to let students select their own and then test out their new and more precise set of

commands by repeating today’s activity using them.

Standards Alignment

CSTA K-12 Computer Science Standards

CL - Collaboration

CPP - Computing Practice & Programming

CT - Computational Thinking

Computer Science Principles

4.1 - Algorithms are precise sequences of instructions for processes that can be executed by a computer and are implemented using

programming languages.

5.2 - People write programs to execute algorithms.

If you are interested in licensing Code.org materials for commercial purposes, contact us.

http://creativecommons.org/
file://code.org/contact

UNIT

3
Ch. 1 1 2 3 4 5 6 7 8 9 10

Lesson 2: The Need for Algorithms
Overview
This is the 2nd day of a 3-lesson sequence in which we attempt to show the

"art" of programming and introduce the connection between programming and

algorithms. In the previous lesson we established the need for a common

language with which express algorithms to avoid ambiguity in how instructions

would be interpreted. In this lesson we continue to establish the connection

between programming and algorithms, with more emphasis on the "art" of

algorithms.

First students are presented with a new task for the “human machine” - to write a

set of instructions to identify the smallest (lowest value) card in row of cards on

the table. Once again we try to establish a set of fundamental commands for

doing this, and develop a more formal set of “low-level” commands for

manipulating playing cards. Students are presented with a "Human Machine

Language" that includes 5-commands and then must figure out how to use

these primitive commands to “program” the same algorithm.

At the conclusion several points about programming can be made, namely: 1.

Different algorithms can be developed to solve the same problem 2. Different

programs can be written to implement the same algorithm.

Purpose
The main point here is to connect the acts of writing "code" and designing

algorithms, and to take some steps towards programming with code. To do this

we imagine trying to write instructions for a "Human Machine" to complete a

tightly defined task with playing cards.

We want to introduce the term algorithm and what designing an algorithm means

in computer science (i.e. programming). We then want to take a few steps to

build up to writing an algorithm with "code". Here are the basic steps of the

lesson and their underlying purpose.

Step 1: Discover common instructions

When students write instructions to find the minimum card in a row of cards, we'll

discover that even though the words used might be different between groups,

there is probably a lot of commonality to underlying actions we need (shifting

hands, picking up cards, comparing cards, jumping to a certain line in the

instructions, etc.)

Step 2: Agree on a minimal instruction set

Recognizing these commonalities we can give names to a few commands and

come to agreement about how they should be interpreted. This is the

foundation for a "code". We then provide a 5-instruction "human machine

language" that is sufficient for implementing an algorithm to find the minimum

card.

Step 3: Use the provided Human Machine Language "code" to implement an

algorithm

The art of programming is to solve computational problems using a provided

language that controls the machine. In the activity we provide a simple, low-

level, language for acting on playing cards. The point is to show that even when

Objectives
Students will be able to:

Trace programs written in the "Human Machine

Language"

Develop an algorithm to find the smallest playing

card in a row of cards

Express an algorithm in the "Human Machine

Language"

Identify the properties of sequencing, selection and

iteration the "Human Machine Language"

Evaluate the correctness of algorithms expressed in

the "Human Machine Language"

Links
For the Teacher

KEY - Human Machine Language - Answer Key

KEY - Minimum Card Algorithm - Answer Key

For the Students

Human Machine Language - Activity Guide (PDF |

DOCX)

Minimum Card Algorithm - Activity Guide (PDF |

DOCX)

Vocabulary
Algorithm - A precise sequence of instructions for

processes that can be executed by a computer

High Level Programming Language - A

programming language with many commands and

features designed to make common tasks easier to

program. Any high level functionality is encapsulated

as combinations of low level commands.

Low Level Programming Language - A

programming language that captures only the most

primitive operations available to a machine. Anything

that a computer can do can be represented with

combinations of low level commands.

https://studio.code.org/s/csp3/stage/2/puzzle/1
https://studio.code.org/s/csp3/stage/2/puzzle/1
https://docs.google.com/document/d/1OGN091PuMtj8mrRLpfhV1oGJxz9dHDaqwJ-PGyenxbU/
https://docs.google.com/document/d/1OGN091PuMtj8mrRLpfhV1oGJxz9dHDaqwJ-PGyenxbU/export?format=pdf
https://docs.google.com/document/d/1OGN091PuMtj8mrRLpfhV1oGJxz9dHDaqwJ-PGyenxbU/export?format=doc
https://docs.google.com/document/d/1FLEhLLb0j5zIC3s2R3qpq8VTHsm4QxRQ-DAKJXHUe2A/
https://docs.google.com/document/d/1FLEhLLb0j5zIC3s2R3qpq8VTHsm4QxRQ-DAKJXHUe2A/export?format=pdf
https://docs.google.com/document/d/1FLEhLLb0j5zIC3s2R3qpq8VTHsm4QxRQ-DAKJXHUe2A/export?format=doc

you know what the commands are, you still need to be creative to use them to

solve a problem.

Why the Human Machine Language? This language bears a strong

resemblance to so-called "low level" programming languages - a sparse,

primitive set of commands to directly control the physical/electronic operations of

a computing machine. Other programming languages are built on top of the low

level languages to provide more abstraction and functionality that combines low

level operations into commonly used procedures. The most commonly known low

level language is called Assembly Language For a good example see the
wrap up of the next lesson where we introduce students to low level

languages.

Agenda
Getting Started (5 mins)

Recall the lessons learned about language
Define: Algorithm

Activity 1 (30 mins)

Find Min Card Algorithm
Discuss - Define a language

Activity 2 (30 mins)

The "Human Machine" Language
Challenge: Find Min with the Human Machine Language
Share solutions to Find Min with the Human Machine Language

Wrap Up (10 mins)

Discuss - The "Art" of Programming

https://en.wikipedia.org/wiki/Low-level_programming_language
https://en.wikipedia.org/wiki/Assembly_language

Teaching Guide
Getting Started (5 mins)

Recall the lessons learned about language
Yesterday's activity focused on the inherent difficulties of trying to express precise processes with written language. We arrived at a few

conclusions...

We need to agree on a set of commands and exactly what terms mean

The fewer commandes we have, the easier it is to agree

We want to know what are the "primitive" operations - the most basic set of operations that will allow us to do most of the tasks that the

situation requires.

Define: Algorithm
 Remarks

Language is important, but there is another part to programming. Once you have a well defined language you need to apply it to

problems.

The art (and science) of using a well-defined language of primitive operations to solve problems is the art and science of algorithms.

The CS Principles definition of algorithm is: Algorithms are precise sequences of instructions for processes that can be executed
by a computer and are implemented using programming languages.

One way to think of the study of algorithms is that it is the study of processes -- how can you use a small set of instructions to clearly

and correctly define process that will solve some problem?

Yesterday, with the LEGO blocks, you also attempted to design an algorithm. Any time you are trying to write a precise set of instructions

for a process to solve a problem you are designing an algorithm.

Today we're going to get into algorithms a little more deeply.

Activity 1 (30 mins)

Find Min Card Algorithm
 Remarks

Perhaps it goes without saying that in a Computer Science class we are concerned with not just any processes, but computational
processes - ones that can be executed by a computer - which have specific sets of constraints.

We often get started thinking about algorithms and computational processes by trying to rigorously act them out ourselves as a sort of
“Human Machine”. When acting as a machine, we can keep the limitations of a computer in mind.

In this activity you're going to pretend that you are a "Human Machine" that operates on playing cards on the table.

Distribute Minimum Card Algorithm - Activity Guide

Put students into pairs

After distributing the guide and playing cards:

Get clear on the task, rules, instructions

With a partner act out an algorithm

Write down the steps

Give students time to work

As students are working you might ask probing questions like:

"How do you know when to stop?"
"Do your instructions state where and how to start?"
"Is it clear where to put cards back down after you've picked them up?"

Discuss - Define a language
Invite a pair to share their solution by reading it out loud or displaying.

https://docs.google.com/document/d/1FLEhLLb0j5zIC3s2R3qpq8VTHsm4QxRQ-DAKJXHUe2A/

 Teaching Tip

Circulate the room asking pairs to demonstrate what they are
coming up with.

Use the suggested solution in the answer key, as well as the
notes on the discussion that follows this activity, to help guide
your questioning.

You're looking for students to:

Develop deeper understanding of the problem - trying to write

an algorithm should evoke lots of questions about details like:

"where do hands start?" "can we number things?"

Develop clear, precise processes - ask questions to address

gaps in clarity. Students might have to define or make up their

own terms for things.

 Discussion Goal

The goal here is to define and agree upon a language for moving
cards around.

You'll probably need to steer the conversation a little bit so that you
land on the commands we need for the upcoming activity. You can
probably coerce the conversation based on your observations
circulating the room.

A secondary, longer range, goal here is to see where programming
languages come from - it's often from a process just like this. What
can end up looking cryptic is often actually simple, or at least stems
from trying to keep things as simple as possible.

Ask if any other groups did something similar.

Prompt:

"As we look at these algorithms you came up with, we
can see they are not all the same. However, there are
common things that you are all making the human
machine do and commonalities in some of your
instructions. Can we define a language of common
Human Machine commands for moving cards around?
What are the commands or actions most of these
instructions have in common?"

Ask students to suggest commands

Write them down or group them based on type.

Hopefully, you can derive a set similar to what we'll use in the

next activity:

SHIFT (hand) - some form of shifting hands one position

down the row left or right

MOVE (hand) - some form of moving a hand directly to a

particular card based on its position in the list or to the

position of one of the other hands.

COMPARE - some way to compare cards and do

something based on the result like: "if card in right hand is

less than card in left hand then..."

GO TO LINE - some way to jump to an earlier or later line

in the program

PICK CARD UP/PUT CARD DOWN - some way to do this

that also makes clear where to put a card back down.

Typically something like: "Put right hand card down into the right-most open space in the row of cards" NOTE: we don't need this

command for the next activity so just acknowledging the need is fine.

Transition to next activity...

Activity 2 (30 mins)

The "Human Machine" Language
We have just identified a set of primitive commands that we can use to operate on a set of cards.

To be very concrete let's formalize this into a language...

Distribute Activity Guide - Human Machine Language - Activity Guide

Introduce Human Machine Language

Have students read the first page.

Clarify the instructions and setup.

Put students into partners (same partner they developed the Find Min algorithm with)

Students Execute the Example Programs

Students should try to figure out the example programs with a partner, making use of the code reference guide.

One partner reads, the other acts as the human machine.

They should jot notes about what the program does.

Review the example programs and answer questions (See: KEY - Human Machine Language - Answer Key)

Verify that students get the gist of how the language works.

For each example you can ask students to describe what it did.

Review the last example which had a problem.

https://docs.google.com/document/d/1OGN091PuMtj8mrRLpfhV1oGJxz9dHDaqwJ-PGyenxbU/
https://studio.code.org/s/csp3/stage/2/puzzle/1

 Teaching Tip

Reviewing Differences

This might be very challenging at first since the problem setup

is slightly different, which is why it's worth reviewing these

differences before students set out on the challenge.

The problem now has different initial assumptions.

It's likely that student's hand-written instructions will differ

because:

1. They weren't restricted to one command per line as they must

be for the Human Machine Language

2. It involved actions like picking up cards, changing hands, or

moving cards to other locations, which is also not possible with

the Human Machine Language.

Don't need to finish today

It's okay if you can't quite finish before the period is over. This

activity continues in the next lesson anyway. You can allow

this to overflow, and make the wrap up points later.

 Share out goal

This is a first experience in evaluating some code.

It's important to actually try out a solution to identify any

potential errors.

It's also important to see that people's programs are different
See the wrap-up notes for other things to identify as students

share

1. Make sure everyone understands the problem

2. Have students suggest a solution (or show a solution along with the following transitional comments)

 Transition to the challenge

This problem we identified with the last example speaks to the art and science of algorithm design and what can make it so interesting.

The question is: can we fix the problem without adding more commands to the language? Yes. (see examples of fixes)

If we can fix a problem without extending the language, that's a good thing. We can focus our attention on designing algorithms given
these constraints.

Let's try to write FindMin using the Human Machine Language...

Challenge: Find Min with the Human
Machine Language
First identify what's different about the problem setup for the

Human Machine Language:

All cards are face up

Card positions have numbers

Don't need to pick up cards or put them down

There is actually no way to move cards at all - only hands

The ending state is well defined - left hand touching the min

card.

Now use the Human Machine Language to write the
algorithm for finding the min card.

NOTE: Students can just write the code, or you can use the

cutout strips of the commands and write values into the

boxes.

Give students time to work things out with their partners.

It may take some time to get oriented and understand the

task.

Share solutions to Find Min with the
Human Machine Language

Put pairs together to compare solutions.

Each group should test out the other group's code by acting

as the human machine.

During the comparision note any differences in people's

approach.

There are several ways to go about it but the canonical

solution is given in the answer key.

Wrap Up (10 mins)

Discuss - The "Art" of Programming
Connect algorithms to programming.

Yesterday we discussed the need for a programming language

Today we came up with our own programming language and used it to implement an algorithm.

The CSP definition of algorithm is: “a precise sequence of instructions for processes that can be executed by a computer and are

implemented using programming languages."

Notice two things about algorithms and programming...

1. Different algorithms can be developed to solve the same problem

Even though you were all trying to solve the same problem (find min) as a class we came up with different methods for doing it. We would

say we came up with different algorithms.

2. Different code can be written to implement the same algorithm

This is sometimes surprising to newcomers. When writing "code" (even with with the human machine language) two people trying to write

 Content Corner

Point 1 is verbatim from the CSP Framework -- Essential Knowledge
statement 4.1.1H

Point 2 is not in the framework, but is equally true.

 code to implement the same algorithm may very easily code it differently.

 Remarks

These two facts - Different algorithms can be developed to
solve the same problem and different code can be written to
implement the same algorithm - embody art of programming
and what makes programming so fun, engaging and creative.

In programming, just like art, we strive to make beautiful things:

1. A beautiful algorithm is an elegant and clever idea for how to solve a problem.

2. A beautiful program is an elegant use of whatever language structures are provided to make the algorithm actually work on a computer.

Foreshadow: tomorrow we'll try some other algorithms in the human machine language.

Standards Alignment

Computer Science Principles

4.1 - Algorithms are precise sequences of instructions for processes that can be executed by a computer and are implemented using

programming languages.

4.2 - Algorithms can solve many but not all computational problems.

5.4 - Programs are developed, maintained, and used by people for different purposes.

If you are interested in licensing Code.org materials for commercial purposes, contact us.

http://creativecommons.org/
file://code.org/contact

UNIT

3
Ch. 1 1 2 3 4 5 6 7 8 9 10

Lesson 3: Creativity in Algorithms
Concept Invention | Unplugged | Algorithms

Overview
This is the third of three lessons that make the connection between

programming and algorithms. In this lesson students continue to work with the

"Human Machine Language" to get creative designing more algorithms for

playing cards. One command is added to the language from the previous lesson

(SWAP) that allows positions of cards to change. With the addition of swap the

challenge is to design an algorithm that will move the minimum card to the front

of the list while keeping the relative order of all the other cards the same. If that

is achieved some other Human Machine Language challenges are available.

Purpose
The purpose of this lesson is to see what "creativity in algorithms" means.

Creativity has to do with both the process you invent (an algorithm) to solve a

new problem in a given context and how you implement that algorithm in a given

language. Creativity often means combining or using algorithms you know as

part of a solution to a new problem. Thus, the "Min To Front" problem is

interesting because students already solved part of it (the find min part) in the

previous lesson.

In the CSP Framework, almost every Essential Knowledge statement from

Learning Objective 4.1.1 Develop an algorithm for implementation in a
program applies here.

The two points from the previous lesson carry over here and are also in the CSP

Framework.

1. Different algorithms can be developed to solve the same problem

2. Different programs (or code) can be written to implement the same algorithm.

Furtermore the CSP Framework states:

4.1.1A Sequencing, selection, and iteration are building blocks of
algorithms.
4.1.2G Every algorithm can be constructed using only sequencing,
selection, and iteration.

The findMin problem and the other problems we solved with the Human Machine

Language also have sequencing, selection, and iteration. Here's what they

mean:

Selection: also known as "branching" most commonly seen in if-statements -

- The JUMP...IF command in the Human Machine Language is a form of

selection. It gives us a way to compare two things (numbers) and take action

if one thing was true.

Iteration: also known as "looping" -- The JUMP command in the Human

Machine Language allows us to move to a different point in the program and

start executing from there. This allows us to re-use lines of code, and this is a

form of iteration or looping.

Sequencing: From the framework: "4.1.1B - Sequencing is the application of

each step of an algorithm in the order in which the statements are given."

Sequencing is so fundamental to programming it sometimes goes without

saying. In our lesson, the sequencing is simply implied by the fact that we

number the instructions with the intent to execute them in order.

Objectives
Students will be able to:

Develop an algorithm to solve a new problem with

playing cards

Express an algorithm in the Human Machine

Language

Identify Sequencing, Selection and Iteration in a

program written the Human Machine Language

Describe the properties of the Human Machine

Language that make it a "low level" language.

Preparation
Playing cards for students

Decide which parts of the activity guide to print

out

Links
For the Teacher

KEY - Human Machine Language Part 2 - Min To
Front - Answer Key

For the Students

Human Machine Language - Part 2: Min To Front
- Activity Guide (PDF | DOCX)

You Should Learn to Program: Christian Genco
at TEDxSMU - Video

Vocabulary
Algorithm - A precise sequence of instructions for

processes that can be executed by a computer

Iterate - To repeat in order to achieve, or get closer

to, a desired goal.

Selection - A generic term for a type of programming

statement (usually an if-statement) that uses a

Boolean condition to determine, or select, whether or

not to run a certain block of statements.

Sequencing - Putting commands in correct order so

computers can read the commands.

https://studio.code.org/s/csp3/stage/3/puzzle/1
https://docs.google.com/document/d/1l2XoaDmn0vYphlT_KS9_Yl7TVgoy6z310qUuUGGKbGg/
https://docs.google.com/document/d/1l2XoaDmn0vYphlT_KS9_Yl7TVgoy6z310qUuUGGKbGg/export?format=pdf
https://docs.google.com/document/d/1l2XoaDmn0vYphlT_KS9_Yl7TVgoy6z310qUuUGGKbGg/export?format=doc
https://www.youtube.com/watch?v=xfBWk4nw440

Looking ahead, while sequencing seems obvious at first, it can trip up the

novice programmer, because you must pay attention to how the state of the

world changes with each line executed. In particular, this can cause some

confusion when programming simple mathematics. For example, here is a series

of instructions in some programming language:

x = 2
x = 5
x = x + 1

In mathematics this is an impossible (and meaningless) system of equations. But

in programming, because it's sequenced, it simply means do one thing after the

other. X gets the value 2. Then x gets the value 5. Then x gets the current

value of x plus 1. When these 3 lines have completed executing x has the value

6.

Agenda
Getting Started (5 mins)

Conclusions from Find Min
Creativity in Algorithms

Activity (25 mins)

Adding SWAP to Human Machine Language
Challenge: Min-to-Front

Wrap Up (15-20 mins)

Review Min-to-Front Solutions
Identify Sequencing, Selection, Iteration in Human Machine
programs
Discussion
Video: You Should Learn to Program: Christian Genco at
TEDxSMU - Video

Extended Learning
Assessment

 Content Corner

This is almost verbatim a line from the CSP Framework.

4.1.1E Algorithms can be combined to make new algorithms.

4.1.1F Using existing correct algorithms as building blocks for

constructing a new algorithm helps ensure the new algorithm is

correct.

 Teaching Tip

You can either bring the whole class back together to review the
example or you can check in with each pair as they finish the
example and move them onto the challenge.

Teaching Guide
Getting Started (5 mins)

Conclusions from Find Min
If you didn't finish FindMin wrap up from the previous lesson, do it now.

Before moving on to the activity students should all have some solution to FindMin written in the Human Machine Language.

Creativity in Algorithms
 Transition to next challenge

One thing about algorithms is that once you know a
few, and know how they work, you can combine them
(or slightly modify them) to solve new problems.
Creativity in algorithms comes from figuring out
clever ways to solve problems by developing a
process that could be executed by a machine.

We study algorithms and care about them because in
programming the techniques and mechanics of certain
processes come up over and over and over again. So it's worth knowing a few so you don't have to reinvent the wheel.

For example, you just wrote an algorithm to find the smallest card in a row of cards. Is it hard to modify that exact same strategy to find the
max card? (no).

Today we'll challenge you with a few more problems that will require you to get creative!

Activity (25 mins)

Adding SWAP to Human Machine Language
Distribute: Activity guide - Human Machine Language - Part 2: Min To Front - Activity Guide

Put students into pairs

Review the first page of the activity guide and the addition of the "swap" command.

Do the example program

Give students a few minutes to trace the example program with their partner.

Review the example

Make sure that students understand the example before moving

on to the challenge.

Here's what the example program does:

END STATE: the order of the cards has been reversed

It does this by first moving the right hand to the end of the

list, then shifting each hand progressively toward the middle

of the row, swapping cards each time.

The program stops once the hands have crossed over each other (by checking if RHPos < LHPos)

Challenge: Min-to-Front
The challenge is to find the min card and swap it to the front of the list, keeping the order of the rest of the cards the same.

As students work encourage them and challenge them to solve the problem in pieces.

Here are some suggestions you can make along the way:

IDEA: Solve move-to-front first

Remember: "Algorithms can be combined to make new algorithms"

Students should know a solution to find min, so they can put that out of mind for a minute.

So, start by assuming that you've found the min card, and writing a procedure to move some card to the front of the list, by swapping.

Once you've got that you can tack the two together

https://docs.google.com/document/d/1l2XoaDmn0vYphlT_KS9_Yl7TVgoy6z310qUuUGGKbGg/

 Teaching Tip

If students did some of the extra challenges (e.g. sorting, partition,
etc.) you might give them an opportunity to showcase it for the
class. Alternatively, if two or more people attempted a particular
challenge you can put them together to compare solutions.

IDEA: Don't be afraid to invent a completely new algorithm

get creative - they might need or want to invent a whole new algorithm

Wrap Up (15-20 mins)

Review Min-to-Front Solutions
Put groups together to have students compare Min-to-Front

solutions

You can also have groups trade algorithms to test out each

others' solutions

If necessary, show or reveal one or more of the solutions from the

answer key.

Make sure students see that it is possible to design a program to do Min-to-Front with the human machine language.

Identify Sequencing, Selection, Iteration in Human Machine programs
 Remarks

The CSP Framework states:

4.1.1A Sequencing, selection, and iteration are building blocks of algorithms.
4.1.2G Every algorithm can be constructed using only sequencing, selection, and iteration.

If these statements are true then we should be able to identify these elements of sequencing, selection and iteration in our Find-Min and
Min-to-Front algorithms.

I'll give you a quick definition of each and you tell me if or where we saw it in our Human Machine Language programs...

Prompt:

"4.1.1B Sequencing is the application of each step of an algorithm in the order in which the statements are given." -- Does our
human machine language have sequencing?

Sequencing is so fundamental to programming it sometimes goes without saying. In our lesson, the sequencing is simply implied by the

fact that we number the instructions with the intent to execute them in order.

Prompt:

"4.1.1C Selection uses a [true-false] condition to determine which of two parts of an algorithm is used." -- Where did we see
"selection" in our human machine language programs?

The JUMP…IF command in the Human Machine Language is a form of selection. It gives us a way to compare two things (numbers)

and take action if the comparison is true, or simply proceed with the sequence if false. NOTE: Selection is also known as “branching”

most commonly seen in if-statements in programs.

Prompt:

"4.1.1D Iteration is the repetition of part of an algorithm until a condition is met or for a specified number of times." -- Where
did we see iteration in our human machine language programs?

The JUMP command (as well as JUMP...IF) in the Human Machine Language allows us to move to a different point in the program and

start executing from there. This allows us to re-use lines of code, and this is a form of iteration or looping.

NOTE: Iteration is also known as “looping” in most programming languages.

Discussion
After reviewing solutions there are a few points to make to wrap up this foray in to algorithms:

Algorithms can be combined to make new algorithms

This is an important essential knowledge statement directly from the CSP Framework. Students should see the connection between the

the Find-Min problem and the Min-to-Front problem.

Low-Level languages exist

Most programming languages that you use in every day life are simply higher level, perhaps easier-to-read commands that are translated

into more primitive machine commands. So-called "low level" languages are the most basic, primitive, set of commands to control a

computer. The Human Machine Language is similar to something called Assembly Language (see graphic)

 Content Corner

Here is an example of a simple program written in IBM Assembly
Language.

Read more about Assembly Language on Wikipedia.

 Teaching Tip

Students don't really need to know many specifics about low level
languages. The point should be made here in order to refer back to
it later when students are programming in a high level language
(like JavaScript). A high level language is more abstract, provides
more functionality to make it faster to write and reason about
programs, but ultimately that code is translated down into low-level,
primitive machine instructions for the computer to execute.

From the CSP Framework: 2.2.3C Code in a programming language is often translated into code in another (lower level)
language to be executed on a computer.

The Human Machine Language is a "low level" language

because the commands are very primitive and tie directly

specific functions of the "human machine".

Video: You Should Learn to Program:
Christian Genco at TEDxSMU - Video
NOTE: this video is 10 minutes long. If possible, and to save time,

you might ask students to watch it outside of class.

 Remarks

Learning to program is really learning how to think in terms of
algorithms and processes. And it can be really fun and
addicting. It also can make you feel like you have magical
powers.

In the next lesson we'll start writing programs that a real
machine (not a human machine) will execute. But since
programming is really about thinking and problem solving your
"human machine" skills will come in handy - reasoning about
program is also about reasoning about what a computer can
and cannot do, and what the given language you're using let's
you and doesn't let you do.

If you didn't want to learn how to program before, perhaps this
video will change your mind...

Show video: You Should Learn to Program: Christian
Genco at TEDxSMU - Video

Extended Learning

Under construction: Try out Human Machine Language on a
computer

By popular demand we are working on making a widget that lets you test out the human machine language...on a computer.

Check back here in the future to see if it's ready.

Assessment

Write a human machine language program that: Repeatedly shifts the left hand to the right until it finds a 5 or 6 The program should

stop when the left hand is at (or past) the end of the list, or it finds a 5, or it finds a 6.

Standards Alignment

Computer Science Principles

2.2 - Multiple levels of abstraction are used to write programs or create other computational artifacts

4.1 - Algorithms are precise sequences of instructions for processes that can be executed by a computer and are implemented using

programming languages.

5.2 - People write programs to execute algorithms.

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://www.allbusiness.com/asset/image/glossaries/4967331.gif
https://en.wikipedia.org/wiki/Assembly_language
https://www.youtube.com/watch?v=xfBWk4nw440
https://www.youtube.com/watch?v=xfBWk4nw440
http://creativecommons.org/
file://code.org/contact

UNIT

3
Ch. 1 1 2 3 4 5 6 7 8 9 10

Lesson 4: Using Simple Commands
Turtle Programming

Overview
This lesson is a student's first exposure to programming in the App Lab

environment. App Lab is embedded into Code Studio, and for this lesson the

student's view is limited to only a very few simple “turtle” commands to draw

graphics on the screen. After a few warm up exercises, using only combinations

of four drawing commands, students must figure out the most “efficient” way to

draw an image of a 3x3 grid. Though the students’ focus should primarily be on

solving the problems at hand, students also get acquainted with the

programming environment that they will be using for the rest of the course. The

environment is intentionally bare bones at this point, the many features of App

Lab will be gradually revealed over time.

Purpose
The main purpose of this lesson is start students on their programming journey

in such a way that the focus is more on problem-solving than learning syntax.

Like the previous lessons about algorithms, by stripping down the available

commands to only a few, these constraints force students to think about the

most efficient way to solve the problem and come up with creative ways of doing

it.

A reason to learn this way is because at its core, a computer can really only do a

few simple things: load a number from memory, store a number in memory, add

two numbers together, etc. Everything the computer can do is the result of

combining these simple instructions to do more and more sophisticated things.

Students in this class will embark on a similar journey, building up complexity

from only a few primitive sets of commands. As students are presented with

increasingly complex tasks, we will progressively expose more commands as a

matter of convenience.

Big picture: when programming at any level of expertise you are always limited

by the constraints of the programming language you choose to use. Whether

the language gives you thousands of commands and libraries with which to

control various things or only a few, you always have to use those as building

blocks to get the computer to do what you want. It usually involves being

creative and making interesting choices about how to go about doing

something. In this lesson, we simplify things dramatically by only providing 4

turtle drawing commands (namely moveForward , turnLeft , penUp and

penDown) to produce simple line drawings. In fact, the problems can be solved

using only moveForward and turnLeft!

Agenda
Getting Started (5 mins)

Recall challenges of the Algorithms Activities
Introduce the challenge and fun of programming

Activity (30 mins)

Introduction to App Lab
Turtle programming problems in Code Studio (up to 3x3 grid)

Wrap-up (15 mins)

Discussion: What does “efficiency” mean when programming?
What's the point? Why constrain to 4 commands

Objectives
Students will be able to:

Solve simple programming challenges when the set

of allowed commands is constrained.

Explain considerations that go into “efficiency” of a

program.

Use App Lab to write programs that create simple

drawings with “turtle graphics.”

Work with a partner to program a turtle task that

requires about 50 lines of code.

Justify or explain choices made when programming a

solution to a turtle task.

Preparation
Familiarize yourself with opening remarks and

comments for background knowledge.

Links
For the Teacher

Cumulative Assessment - Unit 3 Lessons 1 - 10 -

Multiple Choice

For the Students

Tutorial - Turtle Programming (In Code Studio) -
Video (download)

Unit 3 on Code Studio

Vocabulary
Turtle Programming - a classic method for learning

programming with commands to control movement

and drawing of an on-screen robot called a "turtle".

The turtle hearkens back to early implementations in

which children programmed a physical robot whose

dome-like shape was reminiscent of a turtle.

Introduced Code
moveForward

penUp

turnLeft

penDown

file://docs.code.org/applab/moveForward/
file://docs.code.org/applab/turnLeft/
file://docs.code.org/applab/penUp/
file://docs.code.org/applab/penDown/
https://studio.code.org/s/csp3/stage/10/puzzle/1
https://youtu.be/i2KHYUhtOlM
http://videos.code.org/2015/csp/applab/turtle.mp4
https://studio.code.org/s/csp3
file://docs.code.org/applab/moveForward/
file://docs.code.org/applab/penUp/
file://docs.code.org/applab/turnLeft/
file://docs.code.org/applab/penDown/

Extended Learning
Assessment

 Discussion Goal

After the prompt you might say the differences between acting out
algorithms with playing cards and programming on the computer
are pretty obvious. By focusing on what will be the same, we can
reveal the purpose of those activities and set expectations for
programming moving forward.

Some things that will be the same to key in on (students might
suggest others):

Focus on creating processes to do things

Multiple ways to solve a problem

Some struggles understanding exactly what commands mean

Working with partners

Reasoning about solutions by testing them repeatedly, acting

them out

Creatively applying the limited set of commands.

 Teaching Tip

You don’t necessarily have to deliver all of the messages to the

left (Transition and On to programming!) as part of getting

started.

They are important ideas to have in your mind as we move

forward in the unit, especially if students ask why we’re doing

things in a certain way.

The messages are important for setting up the philosophy of

how we will learn programming in the course and how the

programming unit connects to the prior units.

Basically, we’re doing the same thing as we’ve done with

other units: start with simple elements, solve problems. Once

we’ve solved those problems, assume they are solved, and

add complexity and abstraction.

It’s also important to set up programming as an empowering, but

not intimidating undertaking.

Teaching Guide
Getting Started (5 mins)

Recall challenges of the Algorithms Activities
Prompt:

"We have been preparing to learn how to program by
doing some activities with LEGO® and playing cards. Today
we will start programming for "real." Thinking back to the
algorithms activities what do you anticipate will be the
same about those activities vs. the 'real' thing?"

Give students a moment to think to themselves, perhaps write

something down.

Share with a partner.

Share with the whole group.

Introduce the challenge and fun of
programming
 Remarks

Transition

We are about to start a unit on computer programming, in

which you will write instructions for a computer to execute.

Computers are machines. So if we invent an instruction or

command for a computer to execute, then it should be

unambiguous how the computer will interpret or attempt to

execute that instruction; at the very least we can expect that

the machine’s behavior is repeatable, so we can run some

tests until we understand what the computer is doing and

why.

So then the challenge - and fun - of programming at its core,

is understanding how to use and combine those machine

instructions to make the computer do what you want, or to

solve a problem.

On to programming! How we will learn.

In this course, and in computer science in general, all of the
complexity we see on a computer is actually just the
composition (the combining and recombining) of a few simple
elements.

We saw this in Unit 1 with the Internet, as we built up

complex routing and naming protocols, all from solving the

initial problem of how to coordinate communication between

two people on a shared wire.

We saw this in Unit 2 with complex data types, all built up from simple binary codes.

We will do the same thing with programming! To learn about programming we are going to solve problems with only a few
primitive commands. You will learn how you can build up very complex computer programs from only a few simple elements.

We start this journey today.

Activity (30 mins)

Introduction to App Lab
 Remarks

App Lab is the programming environment we’re going to use for the rest of the course to write programs and apps. App Lab is embedded
into Code Studio for many lessons and usually presents you with a series of problems to solve to learn the basic concepts. As you get
better and better at coding, App Lab will show you more and more things you can do. But to start, we’re going to keep things simple and

 Discussion Goal

The point of this discussion is to highlight the fact that "efficiency"
can mean different things depending on the context.

Potential answers to this question can include the time they take to
run on a computer, the time or number of people they require to
create, the number of resources they require to run, etc. Students
will likely come up with others.

Don’t fixate on any one solution and encourage students to come
up with the most comprehensive list possible.

build up the complexity.

Turtle programming problems in Code Studio (up to 3x3 grid)
 Transition to the Using Simple Commands stage on Code Studio: Unit 3 on Code Studio

1. Put students into pairs to work together for the rest of the class.

2. Have students log in to Code Studio for this lesson and with a partner proceed through the problems.

Each person should do her own work, and check in with her partner at the conclusion of each problem to compare solutions before

proceeding to the next one.

 Code Studio levels

Wrap-up (15 mins)

Discussion: What does “efficiency” mean when programming?
Compare Solutions and Discuss: Each pair of students should get together with another pair to compare their solutions for each of the

three problems to determine which is the most efficient. Once they have shared and compared their solutions they can consider the questions

below.

What strategies or reasoning did you use to identify possible solutions?

Is the solution that you or another group found the most efficient? How do you know?

Thought Prompt: What is the “most efficient” way to program the solution for the 3x3 grid?

Discuss: What does “efficiency” mean? Students should discuss

the question below briefly in small groups, and then they will be

sharing their ideas with the class after they have had a minute to

brainstorm. Prompts:

Today’s activity challenged us to find the most efficient solution

to a problem. We care about efficiency when we don’t want to

waste something valuable, like money, time, or space. We

measured the efficiency of our programs in terms of lines of

code, but there are other ways to think about efficiency when

talking about code or programs that run on a computer. When
we try to create efficient programs, what other valuable
resources might we be concerned about conserving?

List the things that students come up with somewhere that can be read by the class. These can be used to motivate portions of the next

and future lessons.

What's the point? Why constrain to 4 commands
 Remarks

Why did we constrain you to only working with 4 possible commands? We begin programming with only a few commands for a few main
reasons:

1. What you did today is, in a microcosm, what you always do when programming: use a language to express a solution to a problem.

Collaborative problem-solving skills are important factors in programming. Being able to get together with other people to talk about

and make reasoned arguments about the best ways to code things is what professionals do.

Lesson Vocabulary & Resources Student Overview

Using Simple Turtle Commands 2 3 (click tabs to see student view)

Challenge: Draw a 3x3 Grid Using Turtle Commands 4 (click tabs to see student view)

Check Your Understanding 5 6 7 (click tabs to see student view)

https://studio.code.org/s/csp3

 Teaching Tip

There are a lot of points in this “What’s the Point?” section. They

all go together and they are not all points you have to make in

this lesson right now.

You should keep these big ideas in your back pocket, because

you may want to refer back them in the future.

The short version:

Creativity in programming comes from the fact that all

programming languages have constraints; your job is to

figure out how to use the language to get the computer to

do what you want it to do or to solve a problem.

Collaboration is a huge help when solving problems with

programming. It’s helpful to work through problems with a

partner.

2. Learning to program isn’t just a matter of memorizing commands. The art of programming - the creative part - is always about

understanding how to use the features of a programming

language to solve a problem.

3. Whether you know 4 commands of a language or hundreds, you will always be constrained by the programming language. The

reason you need to learn how to program is because there

isn’t a command to do every little thing; you have to

understand the set of things that a programming language

can do, and then use your creativity and problem-solving

skills to get the computer to do what you want.

4. In this class, we will repeatedly run into the challenges we

encountered today. Even seemingly simple problems will

require us to creatively apply the tools we have available:

the commands or instructions provided by the programming

language.

5. Multiple approaches are always possible to solve a problem.

Furthermore, we may never be sure we have found the most

efficient one. We may not even agree about how we should

measure efficiency.

6. As we saw today, even when designing programs using four commands to draw with a turtle, the solutions are not always easy. We will

definitely need to keep practicing as we start tackling more complex challenges.

Extended Learning

Ask students to propose ways they could prove that their solution to the 3x3 grid problem is the most efficient. Note: An actual proof is very

challenging.

Assessment

Criteria:

If you want to assess students’ programs (especially 3x3 grid) you can see their work in the answer viewer and you might look for the

following criteria:

The program draws the desired figure.

The turtle is returned to its starting location and is pointed in the correct direction.

The figure is located in the correct position, relative to the starting position of the turtle.

The program only makes use of the “building block” commands provided.

The program is reasonably efficient in its execution.

Questions in Code Studio:

This lesson introduced the notion of "efficiency" in programming, and that it might mean different things at different times. Think of an

example outside of computer science in which you have heard the term "efficiency" and compare it to the ways we talked about efficiency

in programming. In what ways is the meaning of "efficiency" the same? In what ways is it different?

Today we solved a series of problems with a limited set of commands (only 4). Give at least one reason why it's useful to learn how to

solve, and program solutions to problems with a limited set of commands.

Summarize your experiences with this first AppLab lesson by answering the following questions:

What surprised you about programming with such a small set of basic commands?

Were you able to be creative with such a limited set of tools?

What was most frustrating about this activity? If you could add one additional simple command, what would it be, and why?

These assessment questions ask students to draw things and are not in Code Studio:

Draw (on paper) the simplest image you can that we would be unable to create with our “building block” commands, and explain why it

would be impossible to create.

Solution: Anything with a non-90-degree angle, curved, or with different colors, cannot be done with the given set of simple commands.

Draw a second image we would be unable to create with the given simple commands, but for a different limiting reason than you cited in

the first drawing.

Standards Alignment

CSTA K-12 Computer Science Standards

CL - Collaboration

CPP - Computing Practice & Programming

CT - Computational Thinking

Computer Science Principles

5.1 - Programs can be developed for creative expression, to satisfy personal curiosity, to create new knowledge, or to solve problems

(to help people, organizations, or society).

5.2 - People write programs to execute algorithms.

5.4 - Programs are developed, maintained, and used by people for different purposes.

If you are interested in licensing Code.org materials for commercial purposes, contact us.

http://creativecommons.org/
file://code.org/contact

UNIT

3
Ch. 1 1 2 3 4 5 6 7 8 9 10

Lesson 5: Creating Functions
Turtle Programming

Overview
In this lesson, students learn to define and call procedures (in JavaScript,

procedures are called “functions”) in order to create and give a name to a group

of commands for easy and repeated use in their code. They will be introduced to

functions as a form of abstraction that enables them to write code in larger, more

logical chunks and focus on what something does, rather than how it does it. As

they explore the use of functions through a sequence of activities in App Lab,

they will be asked to think about where they see the need for functions and how

these functions can make their code clearer or more concise.

Purpose
Programming languages must necessarily define the meaning of a set of

commands which are generally useful and applicable. In order to extend their

functionality, nearly all programming languages provide a means for defining

and calling new commands which programmers design to fit the needs of the

problems they are trying to solve. Defining functions is an example of how

computer scientists use abstraction to solve problems. A programmer will design

a solution to a small, well-defined portion of the task and then give a name to

the associated code. Whenever that problem arises again, the programmer can

invoke the new function by name, without having to solve the problem again.

This ability to refer to complex functionality by simple, meaningful names allows

for programs to be written in more intuitive ways that reflect the relationships

between different blocks of code.

Agenda
Getting Started (5 min)

Thinking Prompt - Simplifying the 3x3 Challenge
Transition - Introduction to Functions

Activity (35 min)

Transition to Code Studio
Wrap-up (10 min)

Reflection on benefits of functions
Assessment

Assessing Programs
Questions

Extended Learning

Share and Compare
Keeping Going!

Objectives
Students will be able to:

Recognize functions in programs as a form of

abstraction.

Write a program that solves a turtle drawing problem

using multiple levels of abstraction (i.e. functions that

call other functions within your code).

Explain why and how functions can make code

easier to read and maintain.

Define and call simple functions that solve turtle

drawing tasks.

Preparation
Review student-facing instructions in Code Studio

Links
For the Teacher

Cumulative Assessment - Unit 3 Lessons 1 - 10 -

Multiple Choice

For the Students

Unit 3 on Code Studio
Intro to Functions Tutorial - Video (download)

Vocabulary
Abstraction - Pulling out specific differences to

make one solution work for multiple problems.

Function - A piece of code that you can easily call

over and over again.

Introduced Code
function myFunction() { // function body, including optional

"return" command. }

Call a function

https://studio.code.org/s/csp3/stage/10/puzzle/1
https://studio.code.org/s/csp3
https://youtu.be/yPWQfa4CHbw
http://videos.code.org/2015/csp/applab/functions.mp4
file://docs.code.org/applab/functionParams_none/
file://docs.code.org/applab/callMyFunction/

Teaching Guide
Getting Started (5 min)

Goal: Students have been solving turtle challenges with a limited set of commands. Recognize their desire to have access to more commands

to solve these challenges. Motivate the fact they can create these new commands themselves, using the original turtle commands as building

blocks.

Thinking Prompt - Simplifying the 3x3 Challenge
In the previous lesson we created simple turtle drawings using only four commands. At some point you probably wished that more commands

were available to you. Describe a command you wanted to be able to use and explain why you wanted to use it.

Discuss: Provide students time to discuss their ideas with their neighbors before sharing with the class. This can be done fairly quickly but

insist that students provide both the command they would have wanted and the situation in which they wanted to use it. Responses might

include:

A command that turns the turtle to the right
A command that moves forward more than one space
A command that creates a repeated pattern or shape
Students may also just wish for different colors, curved lines, etc.

These will be addressed in a later lesson. Remind them they are thinking of commands to help with the last lesson’s challenge.

Transition - Introduction to Functions
Programming languages will always have some commands that are already defined, but there will be many instances when the exact

command we want isn’t available. Today we’re going to start exploring a powerful feature of most programming languages that will allow us to

overcome this issue and create commands of our own.

Activity (35 min)

 Transition to Code Studio
1. Put students into pairs to work together for the rest of class

2. Have students log in to Code Studio and work with a partner to proceed through the problems.

Each person should do their own work, and check in with their partner at the conclusion of each problem, to compare solutions and

answer questions on the worksheet, before proceeding to the next one.

 Code Studio levels

Wrap-up (10 min)

Reflection on benefits of functions
Display the following questions somewhere they can be seen and ask students to write short responses before discussing with a neighbor.

Once all pairs have had a chance to talk, bring the whole class back together to clarify points and share ideas.

Lesson Vocabulary & Resources 1 (click tabs to see student view)

Using Functions With Turtle Commands 2 3 4 5 6 7

(click tabs to see student view)

Challenge: Draw a Diamond Using Functions 8 (click tabs to see student view)

Check Your Understanding 9 10 11 (click tabs to see student view)

https://studio.code.org/s/cspunit3

Prompt: "List the benefits of being able to define and call functions in a program. Who specifically gets to enjoy those
benefits?"

Possible responses:

programs are easier to read and write

functions remove the need to repeat large chunks of code

functions break the program into logical chunks

The person programming and any other human reading the program enjoys these benefits.

Important to note: functions do not make the program easier (or harder) for the computer to run or understand -- it must still run all of

the same commands as before.

Prompt: "How is the use of a function an example of abstraction?"

Possible responses:

Abstraction is the practice of temporarily forgetting details unnecessary to addressing the problem at hand.

Defining and calling functions is another example of how computer scientists use abstraction to solve problems.

Once you have written a function that you know works as intended, you can call the function as often as you wish, without worrying

about the details or problems you had to solve to get it working.

Assessment

Assessing Programs
If you wish, you may assess the final version of the diamond drawing that students develop in Code Studio. Suggested criteria are below.

The program draws the diamond.

The program defines four functions: right(), drawStep(), drawSide(), and drawDiamond(). The names are less important than the existence

of four functions with this functionality.

The program makes a single call to drawDiamond().

The program looks clean and organized.

Questions
1. Check the two items that are true statements about functions:

Meaningful function names help people better understand programs.

Meaningful function names help computers better understand programs.

Functions in programming are useful mathematical tools for doing complex computations.

Functions in programming are named groupings of programming instructions.

2. In your own words explain at least one reason why programming languages have functions.

Extended Learning

Share and Compare
If students complete the diamond challenge early, ask them to compare their solution with another group. They should then try to create the

version of the program that they believe is best with an associated justification. Challenge students to think about potential tradeoffs between

efficiency and readability.

Keeping Going!
Groups that finish early can continue working with their functions to make more complex figures. Ask groups to continue building functions

they think are generally useful for drawing.

Standards Alignment

CSTA K-12 Computer Science Standards

CL - Collaboration

CPP - Computing Practice & Programming

CT - Computational Thinking

Computer Science Principles

2.2 - Multiple levels of abstraction are used to write programs or create other computational artifacts

5.3 - Programming is facilitated by appropriate abstractions.

5.4 - Programs are developed, maintained, and used by people for different purposes.

If you are interested in licensing Code.org materials for commercial purposes, contact us.

http://creativecommons.org/
file://code.org/contact

UNIT

3
Ch. 1 1 2 3 4 5 6 7 8 9 10

Lesson 6: Functions and Top-Down Design
Turtle Programming

Overview
This lesson presents a top-down problem-solving strategy for designing solutions

to programming problems. Students use a worksheet to learn about top-down

design, and then on paper, design a solution to a new turtle drawing challenge

with a partner. Having practiced this approach on paper and in code, students

will be re-presented with the 3x3 square challenge from an earlier lesson and

asked to improve upon their old solution by designing multiple layers of

functions.

Purpose
The main purpose here is to familiarize students with the concept of developing

"procedural abstractions." One of the main learning objectives in the CSP

framework is: "2.2.1 Develop an abstraction when writing a program...".

Furthermore the AP Performance Task: Create requires students to "develop

an abstraction to manage complexity of your program." For all intents and

purposes, developing abstractions starts with writing reusable functions (or

procedures) in your code that encapsulate and give a name to multi-line

segments of code that other parts of your code calls upon.

A technique for deciding what functions you should write is to look at the

problem with a "top-down design" perspective. The process of creating software

begins long before the first lines of code are written. Breaking a problem down

into layers of sub-tasks, and writing well-named functions that solve those tasks

is a creative act of abstraction. It also leads to good code that is more efficient,

easier to read, and therefore easier to debug when problems arise.

In professional settings, teams of people first identify the problems and sub-

problems the particular software will be addressing and how it will be used. This

approach to designing software is critical when facing large-scale programming

tasks. Once the problem is well understood, it can be broken into parts that

teams or individual programmers can begin to work on solving at the same time.

Full software systems take advantage of the power of abstraction; each

programmer in a team can write code, assuming the subproblems will be solved

and written by other teammates.

Agenda
Getting Started (5 min)

What Does Efficiency Mean?
Activity

Distribute Worksheet
Transition to Code Studio

Wrap-up

Some points about functions and abstraction:
Assessment

Assessing Programs
Questions

Objectives
Students will be able to:

Write a complete program with functions that solve

sub-tasks of a larger programming task.

Explain how functions are an example of abstraction.

Use a “top-down” problem-solving approach to

identify sub-tasks of a larger programming task.

Preparation
Review this explanation of Top-Down Design

Links
For the Students

Unit 3 on Code Studio
Top-Down Design - Worksheet (PDF | DOCX)

Vocabulary
Abstraction - Pulling out specific differences to

make one solution work for multiple problems.

Function - A piece of code that you can easily call

over and over again.

Top Down Design - a problem solving approach

(also known as stepwise design) in which you break

down a system to gain insight into the sub-systems

that make it up.

https://en.wikibooks.org/wiki/A-level_Computing/AQA/Problem_Solving,_Programming,_Data_Representation_and_Practical_Exercise/Problem_Solving/Top-down_design_and_Step-wise_refinement
https://studio.code.org/s/csp3
https://docs.google.com/document/d/1kfcdyJsC-I1Pl-TPWLv-BB7ffMxtw5B6XtegmVwzo7o/
https://docs.google.com/document/d/1kfcdyJsC-I1Pl-TPWLv-BB7ffMxtw5B6XtegmVwzo7o/export?format=pdf
https://docs.google.com/document/d/1kfcdyJsC-I1Pl-TPWLv-BB7ffMxtw5B6XtegmVwzo7o/export?format=doc

 Teaching Tip

Comparing solutions on paper

The point of having students compare top-down designs is mostly
just to see that people think about problems differently. Pairs
should move to Code Studio after working out a solution on paper.

More practice with top down design?

If you want to give students more practice with top-down design
you can make up almost any geometric shape that has some
patterns or repetitions in it. Virtually any symmetrical figure you can
create with the turtle would have some elements worth breaking
into functions. Here's a trick to make your own: make a function
that has the turtle draw something. Then call that function a few
times, perhaps turning or moving between each call. Use the
resulting figure as an interesting exercise.

Evidence of good design

An interesting thing to look at is the name of the top-level function
students come up with, which should be a description of what they
think they are drawing.

Guide students to come up with descriptive function names that
give insight to their thinking. A high-level function named something
like drawThing is not that great. Something like snowflake or
crosshairs or antenna is better because it lets the reader see what

the programmer is thinking about.

Teaching Guide
Getting Started (5 min)

What Does Efficiency Mean?
Recall:

In the previous lesson we wrote a program that used layers of functions (functions that called other functions) to get

the turtle to draw a diamond-shaped figure.

Prompt:

"Imagine that you have two programs that drew the diamond-shaped figure. One program uses functions
as we did in the previous lesson. The other doesn’t use functions; it’s just a long sequence of the turtle’s
primitive commands. Which program is more efficient? Make an argument for why one is more efficient than the other."

Discuss:

Have students briefly share their arguments for one program over the other and steer the conversation to these points… “Efficient” can mean

several different things here:

It could mean the total number of primitive operations performed by the turtle.

It could mean number of lines of code.

It could hinge on the ability to reuse code within your own code.

It could be about the speed and clarity with which you can write the program.

All of these are valid arguments for a student to make.

Transition: Efficiency is an interesting thing to think about, but functions also introduce the ability to leverage the power of abstraction: when

we write a function, it solves a small piece of a bigger problem. Having the small problem solved allows us to ignore its details and focus on

bigger problems or tasks.

Today we’ll get more practice with thinking about how to break problems down into useful functions.

Activity

Distribute Worksheet
Distribute the Top-Down Design - Worksheet

Students should work in pairs.

Read the first page of the worksheet that

describes the top-down problem solving

process.

Design a solution to the problem on the

second page by writing down the functions they would write to

solve the problem.

After a pair has come up with a solution on paper, have them

compare with another group to see similarities and differences.

 Transition to Code Studio
Here is a quick reference guide for what students will see in Code

Studio.

 Code Studio levels

https://docs.google.com/document/d/1kfcdyJsC-I1Pl-TPWLv-BB7ffMxtw5B6XtegmVwzo7o/

Wrap-up

Some points about functions and abstraction:
When we layer functions - with functions that call other functions - we are creating layers of abstraction.

In programming, writing functions helps us create layers of abstraction that allow us to design and create increasingly complex systems.

We’ve seen layers of abstraction before in the design of Internet protocols, or in the binary encoding of information.

Solving a fundamental piece of a problem that can be reliably reused in a different context frees us to think about more complex problems

because we can trust the piece that has been solved and don’t have to worry about its details.

Solving small problems - like how to send a single bit from one place to another - allows us to think about bigger problems, like sending

numbers, or text, or images, to multiple people, over networks, in packets...etc., etc., etc.

Prompt: "Where else in your life have you seen layers of abstraction? Connect the idea of layers of abstraction to some other
activity."

There are many possible connections to make since almost any task in life can be broken down ad-infinitum. In the video about functions

from the previous lesson, Chris Bosh makes a connection to basketball. Once you know how to dribble and shoot, then you learn some

moves to do, and once you know that, you run plays that rely on the fact that those fundamental elements (or the problems) have been

solved.

Assessment

Assessing Programs
If you wish, you may assess the two programs written in Code Studio; the criteria are the same for both the “snowflake” program and the new

version of the 3x3 grid:

The program draws the figure correctly.

The program defines multiple layers of functions.

The functions defined have descriptive and meaningful names.

The program is “kicked off” with a single call to a function that makes calls to subsequent functions.

The program looks clean and organized.

Questions
1. Consider the figure below. Use top-down thinking to design a solution to the problem. In the space provided write a list of just the names of

the functions that you would write in a program that draws this figure. (Assume that the long line segments are 6 turtle moves long.)

2. Which of the following statements about writing functions and Top-Down Design is NOT true?

Writing functions helps manage complexity in a program.

Top-Down Design leads to programs which feature multiple layers of abstraction.

Two programmers solving the same problem using Top-Down Design should arrive at identical

programs.

Top-Down Design relies upon identifying subproblems of a larger problem.

Top-Down Design assists in identifying the layers of functions that will be used to solve a

programming problem.

3. In the Create Performance Task you will be asked to identify an abstraction in your program and

explain how it helps manage the complexity of the program. Functions are a form of abstraction.

Pick a function you wrote in your solution to the 3x3 square problem and explain how it helps manage the complexity of your program.

Standards Alignment

CSTA K-12 Computer Science Standards

Lesson Vocabulary & Resources Student Overview

Using Functions with Turtle Commands 2 3 (click tabs to see student view)

Check Your Understanding 4 5 6 (click tabs to see student view)

CL - Collaboration

CPP - Computing Practice & Programming

CT - Computational Thinking

Computer Science Principles

2.2 - Multiple levels of abstraction are used to write programs or create other computational artifacts

5.1 - Programs can be developed for creative expression, to satisfy personal curiosity, to create new knowledge, or to solve problems

(to help people, organizations, or society).

5.3 - Programming is facilitated by appropriate abstractions.

If you are interested in licensing Code.org materials for commercial purposes, contact us.

http://creativecommons.org/
file://code.org/contact

UNIT

3
Ch. 1 1 2 3 4 5 6 7 8 9 10

Lesson 7: APIs and Using Functions with Parameters
Overview
Students will learn to read App Lab’s API documentation and will use functions

that accept parameters in order to complete a series of drawing puzzles which

require them to make use of the App Lab API documentation to learn new

drawing commands. Many of these commands will require the use of

parameters. The final challenge asks students to design a personal monogram

making use of the commands they learned during the lesson.

Purpose
An API is a reference guide which catalogs and explains the functionality of a

programming language. If a programmer develops the practice of referencing an

API, she can make full use of that functionality without undergoing the tedium of

memorizing every detail of the language. In today’s lesson, students will need to

read through the API in order to find and understand new commands for moving

the turtle, selecting colors, and drawing different-sized dots and lines on the

screen. Students should not necessarily understand every command in the

drawing API in detail, but they should be familiar with referencing the API as a

standard part of the process of writing a program. This will also be the first time

students are given access to drawing functions that take parameters (e.g.,

moveForward(40) vs. moveForward()).

Agenda
Getting Started (5 mins)
Activity (40 mins)

Learning the API and Using Functions with Parameters
Wrap Up (5 mins)

Reviewing Vocabulary
Share Your Images

Assessment
Extended Learning

Objectives
Students will be able to:

Use parameters to provide different values as input

to procedures when they are called in a program.

Use API documentation to assist in writing programs.

Define an API as the set of commands made

available by a programming language.

Preparation
Review functions in the "Turtle toolbox to assist in

debugging code

Links
For the Students

Unit 3 on Code Studio

Vocabulary
API - a collection of commands made available to a

programmer

Documentation - a description of the behavior of a

command, function, library, API, etc.

Hexideximal - A base-16 number system that uses

sixteen distinct symbols 0-9 and A-F to represent

numbers from 0 to 15.

Library - a collection of commands / functions,

typically with a shared purpose

Parameter - An extra piece of information that you

pass to the function to customize it for a specific

need.

Introduced Code
arcLeft

arcRight

penWidth

penRGB

turnTo

moveTo

penColor

Call a function with parameters

https://studio.code.org/s/csp3
file://docs.code.org/applab/arcLeft/
file://docs.code.org/applab/arcRight/
file://docs.code.org/applab/penWidth/
file://docs.code.org/applab/penRGB/
file://docs.code.org/applab/turnTo/
file://docs.code.org/applab/moveTo/
file://docs.code.org/applab/penColor/
file://docs.code.org/applab/callMyFunction_n/

 Discussion Goal

Introduce the fact that most programming languages, including the
version of JavaScript included in App Lab, contain many
commands. Motivate the need for documentation to help
programmers learn and recall how to use these commands.

 Teaching Tip

What Makes a Programmer?: This discussion is a great
opportunity to emphasize that programming is not some innate
talent. Every programmer has to learn by seeing examples of a
language being used and reading documentation. In fact, even
professional programmers will frequently reference documentation
while designing software. Becoming a good programmer is much
less about memorizing a language and more about learning habits
of mind and patterns that allow you to use a language (including its
documentation) effectively!

Teaching Guide
Getting Started (5 mins)

 Remarks

So far in this unit we have been exploring programming by
drawing turtle art with only a few commands. It will probably not
surprise you to learn that there are many more commands
included in most programming languages, including the version
of JavaScript included in App Lab. In fact, most programming
languages include hundreds if not thousands of commands.

Thinking Prompt:

"Do you think programmers memorize all of the commands in a programming language? If not, how is anyone ever able to use
an entire programming language?"

Discuss: Provide students time to discuss their ideas with their

neighbors before sharing with the class. Responses might include:

Programmers ask each other for help.

There are reference guides online or in print to help

programmers use a language.

Programmers read old code in the language to learn how to

write new code.

 Transitional Remarks

Programmers weren’t born knowing how a programming
language works, and, like you and me, they don’t have perfect
memories. Instead they rely on written documentation to help
them learn new features of a language and recall how it works. Today we are going to be exploring how useful documentation can be when
learning a programming language or just writing software.

Activity (40 mins)

Learning the API and Using Functions with Parameters
 Remarks

At end of the day we hope to be much more talented turtle artists, but we’re also going to be learning another important skill: reading the
documentation of a programming language.

Before you ask me or a classmate for help today, I want you to read through the documentation, try the examples, talk with friends, and
then talk to me. It may be slower going today, but in the long term it will make you much more confident programmers.

 Code Studio levels

View on Code StudioA new version of the moveForward command is introduced: moveForward(pixels) . Students use it to move the

turtle to the edge of the screen in one command.

Encourage students to read the explanation of the term parameter and not just skip it. It's an important term to know.

Terminology: Parameter is introduced. Students are shown parameterized versions of basic turtle move commands and asked to

draw a triangle.

Lesson Vocabulary & Resources Teacher Overview Student Overview

Introduction to Parameters 2 3 4 5 6 7 8 9 (click tabs to see student view)

Make Your Own Turtle Drawing 10 (click tabs to see student view)

https://studio.code.org/s/csp3/stage/7/puzzle/1
file://docs.code.org/applab/moveForward/
file://docs.code.org/applab/moveForward/

Wrap Up (5 mins)

Reviewing Vocabulary
The level progression for today’s lesson includes many important vocabulary words. While these levels attempt to introduce these words in the

context of using them, take a moment at the conclusion of class to review the words covered and ensure students are comfortable using

them.

Parameter: accepts a value to be passed to a function, typically affecting the behavior of that function (e.g., changing the distance the

moveForward() command moves the turtle)

Library: a collection of commands / functions, typically with a shared purpose (e.g., a library of functions for manipulating the turtle)

API: application program interface, the full set of commands included in a programming language (e.g., every command made available by

App Lab)

Documentation: a description of the behavior of a function, library, API, etc.

Share Your Images
If there is time remaining, provide students an opportunity to share images they created using the full turtle library.

Assessment

Questions:

1. Multiple Choice: What is an API?

Abstract Programming Inheritance: The idea that abstractions in languages get “passed down” in newer versions

Artificial Parameter Intelligence: The idea that function parameters should be intelligent enough to “know” what you want as a

programmer

Application Program Interface: A well-documented library of functions provided in a programming language that helps to simplify

complex programming tasks.

Abstract Parameter Interface: A high-level description of the parameters a function accepts

2. Multiple Choice: What is a function parameter?

“para-meter” -- a measure of the distance between a function’s conception and implementation.

A way to give input to a function that controls how the function runs.

A collection of commands that can be used in a programming language.

Another name for the purpose of a function.

A named memory location.

3. Free Response: It is said that functions with parameters generalize the behavior of a more specific command. Explain what this sentence

means to you using the difference between turnLeft() and turnLeft(angle).

Extended Learning

Design an image using the drawing commands reviewed today. Share the image (but not the code used to generate it) with a classmate and

challenge him to recreate the image. How close can he get? Did you complete the task in the same way?

Standards Alignment

Computer Science Principles

2.2 - Multiple levels of abstraction are used to write programs or create other computational artifacts

5.1 - Programs can be developed for creative expression, to satisfy personal curiosity, to create new knowledge, or to solve problems

(to help people, organizations, or society).

5.3 - Programming is facilitated by appropriate abstractions.

Check Your Understanding 11 12 13 (click tabs to see student view)

http://creativecommons.org/

If you are interested in licensing Code.org materials for commercial purposes, contact us.

file://code.org/contact

UNIT

3
Ch. 1 1 2 3 4 5 6 7 8 9 10

Lesson 8: Creating Functions with Parameters
Overview
In this lesson, students practice using and creating functions with parameters.

Students learn that writing functions with parameters can generalize solutions to

problems even further. Especially in situations where feel like you are about to

duplicate some code with only a few changes to some numbers, that is a good

time to write a function that accepts parameters. In the second half of the

lesson, students make a series of modifications to a program that creates an

“Under the Sea” scene by adding parameters to functions to more easily add

variation to the scene. Lastly, students are introduced to App Lab’s random

number functions to supply random values to function calls so the scene looks a

little different every time the program runs.

Purpose
Writing functions with parameters is a simple idea, but it traditionally has some

devilish details for new learners of programming. The basic idea is that you often

want to write a function that takes some input and performs some action based

on that input. For example, the turtle function moveForward is much more useful

when you can specify how much to move forward (e.g., moveForward(100)),

rather than just a fixed amount every time. It’s very common to encounter

situations where as a programmer you realize that you basically need a

duplicate of some code you’ve already got, but you just want to change some

numbers. That’s a good time to write a function with a parameter; the parameter

just acts as a placeholder for some value that you plug in at the time you call the

function. Just like it’s considered good practice to give descriptive names to your

functions, the same is true for the names of the parameters themselves. For

example: drawSquare(sideLength) is better than drawSquare(stuff) .

Agenda
Warm Up (5 mins)

Recall the Purpose of Parameters
Activity (40 mins)

Writing Functions with Parameters: Under the Sea
Wrap Up (5 min)

When do you need a function with a parameter?
Assessment
Extended Learning

Objectives
Students will be able to:

Write functions with parameters to generalize a

solution instead of duplicating code.

Identify appropriate situations for creating a function

with parameters.

Use random numbers as inputs to function calls for

the purpose of testing.

Add parameters to a function in an existing piece of

code to generalize its behavior.

Preparation
Review functions in the "Turtle toolbox to assist in

debugging code

Links
For the Students

Functions with Parameters - Video (download)

Vocabulary
Parameter - An extra piece of information that you

pass to the function to customize it for a specific

need.

Introduced Code
randomNumber min/max

Call a function with parameters

function myFunction(n){ //code }

https://www.youtube.com/watch?v=k7Ji1E97-V0&feature=youtu.be
http://videos.code.org/2015/csp/applab/functions_parameters.mp4
file://docs.code.org/applab/randomNumber_min_max/
file://docs.code.org/applab/callMyFunction_n/
file://docs.code.org/applab/functionParams_n/

 Discussion Goal

We want to get back to programming fairly quickly.

Use the Getting Started Activity to briefly recall the benefits of
functions with parameters they have already seen and motivate the
desire to create them for themselves.

Students will make their own functions with parameters in this
lesson.

Teaching Guide
Warm Up (5 mins)

Recall the Purpose of Parameters
 Remarks

In the previous lesson, we learned to use a lot of new turtle
commands. Some of these commands accept a parameter, or
even many parameters, which allow us to pass values to the
function. This allowed us to make much more interesting images
by specifying precisely how far the turtle should move or turn,
and introduced the ability to choose specific pen sizes and
colors.

Parameters are a powerful programming construct.

Suppose we have a whole group of similar problems, like

turning the turtle some amount.

Without a parameter we would need 360 different functions, one for each number of degrees we wanted to turn!

Parameters allow us to use a single function as a general solution to a whole group of problems.

This is clearly a useful construct to use in our programs, and in today’s lesson we’re going to learn how to create functions with parameters
for ourselves.

Activity (40 mins)

 Transition to Code Studio

Writing Functions with Parameters: Under the Sea
The levels in Code Studio for this lesson walk students through a number of small exercises that build up to making a small "under the sea"

drawing.

Below is a quick reference guide that shows what students are asked to do in each level.

 Code Studio levels

Wrap Up (5 min)

When do you need a function with a parameter?
Reflection: Students should briefly journal and share responses to the following question:

Prompt: "Develop a rule for deciding when to create a function with a parameter rather than a normal function. Below your rule
write a couple sentences justifying your rule."

Lesson Vocabulary & Resources Student Overview

Drawing Shapes With Parameters 2 3 4 5 (click tabs to see student view)

Under the Sea Drawing with Parameters 6 7 8 9 10 11

(click tabs to see student view)

Challenge: Continue Your Drawing With More Functions 12 (click tabs to see student view)

Check Your Understanding 13 14 (click tabs to see student view)

https://code.org/curriculum/docs/csp/code-studio-icon.png

 Discussion Goal

Having used parameters to generalize the behavior of many
functions, students should attempt to formalize their understanding
of what parameters are and why they are beneficial. Important
points to draw out are:

Parameters allow the creation of a generalized solution to a
whole class of problems, rather than individually solving

many specific problems.

Parameters remove the need to create repetitive functions,

making code easier to write, read, and change.

Share Responses:

Once students have written their responses, have them share with

a neighbor and ask a few students to share their rules with the

class. Focus in particular on the reasons for creating a function

with a parameter, as students will likely hit on the two points

above. For example:

“Whenever you have two functions that basically do the same

thing make a function with a parameter instead, to remove the

need to duplicate code.”

“If you need a function to do the same thing a lot of different

ways, then use a parameter so one function can do it right

away.”

If these ideas don’t come out, then you may make these points yourself and instead ask students where they saw these principles in today’s

activities. Point out that every time they added a parameter to a function, they generalized the behavior of the function without having to

rewrite the code.

Assessment

1. Multiple Choice: Which of the following are true?

Functions with parameters can be used to prevent the creation of duplicated code.

Parameters can only be used once within the body of a function.

Parameters generalize the solution of a specific problem.

Parameters need not be provided to a function in any particular order.

2. Free Response: “Abstraction” is often used to indicate cases where we focus on a general case and ignore a specific instance of a

problem. Given this meaning of the word, how are functions with parameters an example of abstraction?

Extended Learning

Students can extend their digital scene by creating parameterized functions for other components of the scene or adding additional

parameters to their current set of functions.

Standards Alignment

Computer Science Principles

2.2 - Multiple levels of abstraction are used to write programs or create other computational artifacts

5.3 - Programming is facilitated by appropriate abstractions.

5.4 - Programs are developed, maintained, and used by people for different purposes.

If you are interested in licensing Code.org materials for commercial purposes, contact us.

http://creativecommons.org/
file://code.org/contact

UNIT

3
Ch. 1 1 2 3 4 5 6 7 8 9 10

Lesson 9: Looping and Random Numbers
Turtle Programming

Overview
Students learn to use random values and looping to create variation in their

drawings and quickly duplicate objects they wish to appear in their digital scenes

many times. Students will be presented with a version of the for loop which only

enables them to change the number of times the loop runs. This block is

essentially a "repeat" block and will be presented that way. Students will also be

presented with blocks which enable them to choose a random number within a

given range. Together these blocks enable students to create more complex

backgrounds for digital scenes by randomly placing simple objects within the

background of their scene. Students use these tools to step through the Under

the Sea exemplar digital scene.

Purpose
Loops are a relatively straightforward idea in programming - you want a certain

chunk of code to run repeatedly - but it takes a little practice to get good at

controlling loops and recognizing how and where in your programs to use them.

The for loop in JavaScript (and many other programming languages) is designed

to be used for both simple and sophisticated programming tasks, thus it has a

lot of syntax to it that will be explained in the future. In this lesson, the block-

based form of the for loop exposed to students is effectively a simple repeat

loop - it only lets them change a number that dictates how many times the loop

repeats.

Random numbers are also used more (much more) in this lesson as an effective

way to experiment with loops. Creating some randomly-generated output with

each iteration of the loop is good visual feedback that the loop is running the

way you expect. It also helps you explore the ranges of possible outputs, which

tells you more about what your program can and cannot do.

Agenda
Getting Started (2 minutes)

Loops versus Functions
Activity (30 minutes)

Improving Under The Sea with Loops
Wrap Up (10 minutes)

When to use loops versus functions
Assessment
Extended Learning

Objectives
Students will be able to:

Use a loop in a program to simplify the expression of

repeated tasks.

Identify appropriate situations in a program for using

a loop.

Use random values within a loop to repeat code that

behaves differently each time it is executed.

Preparation
Set up the room for computer use

Plan how you want students to watch the video

on loops

Links
For the Teacher

Unit 3 Lesson 9 - Forum

Cumulative Assessment - Unit 3 Lessons 1 - 10 -

Multiple Choice

For the Students

Unit 3 on Code Studio
Tutorial - Loops - Video (download)

Vocabulary
For Loop - A particular kind of looping construct

provided in many languages. Typically, a for loop

defines a counting variable that is checked and

incremented on each iteration in order to loop a

specific number of times.

Loop - The action of doing something over and over

again.

http://forum.code.org/c/csp-unit3/lesson7
https://studio.code.org/s/csp3/stage/10/puzzle/1
https://studio.code.org/s/csp3
https://youtu.be/G8hfAk4PfOM
http://videos.code.org/2015/csp/applab/loops.mp4

 Purpose

Students will have an opportunity to explore the process of creating
loops by programming with them in App Lab. Use the Getting
Started Activity to motivate the need in some programs to repeat
commands many times, and foreshadow the fact that random
inputs can be used in repeated commands to rapidly develop a
variety of behaviors.

Teaching Guide
Getting Started (2 minutes)

Loops versus Functions
 Remarks

As we have developed as programmers, we have focused on
the process of breaking down large tasks into smaller pieces
and assigning each piece a function.

When we break down a large task, often we will find that some
portion of the task needs to be repeated many times. As
programmers, we would simply call the same function many
times. This might work if we need to call the same function five
times, but if that function needs to be run 1,000,000 times, we’ll need a better solution.

Today we’ll be exploring how a programming construct called a loop solves this problem by allowing us to repeat a set of commands many
times.

We’ll also practice looping through commands many times with random input, therefore giving us many instances of random output.

Just as we saw yesterday, this will be both useful for testing our code and also for developing more variety in our drawings.

At the end of class we'll ask: "When should you use a loop instead of a function, or vice versa?"

Activity (30 minutes)

Improving Under The Sea with Loops
Today we'll learn how to use something called a "for loop"

The for loop is a JavaScript programming construct - it looks and works the same here as it does in "the real world".

 Code Studio levels

Wrap Up (10 minutes)

When to use loops versus functions
Having used loops to repeatedly run a smaller portion of a larger program, students should attempt to formalize their understanding of when a

loop should be used.

Reflection: Students should briefly journal and share responses to the following question:

"Develop a rule for deciding when to use a loop within a program. Perhaps think about when to use a loop versus a function.
Try to make connections to Top-Down Design in your response. Below your rule, write a couple sentences justifying your
rule."

Share Responses:

Lesson Vocabulary & Resources Student Overview

Introduction to Loops 2 3 4 5 (click tabs to see student view)

Using Loops to Add Detail to Your Drawing 6 7 8 9 10 11 12

(click tabs to see student view)

Under the Sea Free Play 13 (click tabs to see student view)

Check Your Understanding 14 15 (click tabs to see student view)

 Discussion Goal

Important points to draw out are related to when to use a function
v. when to use a loop. While you can get code to funciton similiarly
with a function or a loop the general rule of thumb is:

Write a function when you have a piece of code - a procedure -

that you might reuse in other places in your program.

A function might also help you encapsulate a solution to a

common problem in one place that you can call on

repeatedly with different inputs (e.g. drawSquare(size))

Writing a function is often more of a design decision. You are

trying to encapsulate and abstract details so you think about

other parts of a larger program

Write a loop when there is something you need to do over and

over again and it doesn’t make sense to split it up any more.

Writing a loop is more of an algorithmic decision - you

actually just need repetitious behavior to solve some

problem.

For example, we don’t want to manually call functions many

times in a row. If you’re calling the same function many times

in a row, it’s time to make a loop.

Once students have written their responses, have them share with

a neighbor and ask a few students to share their rules with the

class. Focus in particular on the reasons for using a loop.

For example:

“Use a loop when there is something you need to do over and

over again and it doesn’t make sense to split it up any more.”

“We don’t want to manually call functions many times in a row.

If you’re calling the same function many times in a row, it’s time

to make a loop.”

Assessment

Project:

For students’ individual renderings of the Under the Sea project,

it’s recommended that you simply check for completion and that

the final version students submit contains all of the required

features. In the next lesson, students create their own scene from

scratch, and that project has a complete rubric for a more formal

assessment.

Questions:

Multiple Choice:

A programmer wants to write a program in which the turtle draws 8 squares in a row while moving forward. The final result should

look like the turtle drawing shown at left.

But something is wrong! The incorrect code is shown to the right. The

programmer has attempted to write a function to draw a single square. Then he

wrote another function that attempts to call that function 8 times. Mentally trace

through the code and determine which line of code should be removed to make

the program do what it's supposed to.

A: 1

B: 5

C: 6

D: 7

E: 14

Free Response:

When breaking a problem down, you often encounter elements that you want to use

repeatedly in your code. Sometimes it's appropriate to write a new function; at other times it's appropriate to write a loop. There is no hard-

and-fast rule as to which is better, but what do you think? What kinds of circumstances would lead you to writing a function versus using a

loop?

Extended Learning

Students can extend their digital scene by manipulating the random values used as inputs to the different components of the scene or adding

additional functions for drawing new figures. At the end of the progression, students are given a separate level in which to do so.

Standards Alignment

CSTA K-12 Computer Science Standards

CL - Collaboration

CPP - Computing Practice & Programming

CT - Computational Thinking

Computer Science Principles

4.1 - Algorithms are precise sequences of instructions for processes that can be executed by a computer and are implemented using

programming languages.

5.1 - Programs can be developed for creative expression, to satisfy personal curiosity, to create new knowledge, or to solve problems

(to help people, organizations, or society).

5.3 - Programming is facilitated by appropriate abstractions.

5.4 - Programs are developed, maintained, and used by people for different purposes.

If you are interested in licensing Code.org materials for commercial purposes, contact us.

http://creativecommons.org/
file://code.org/contact

UNIT

3
Ch. 1 1 2 3 4 5 6 7 8 9 10

Lesson 10: Practice PT - Design a Digital Scene
Turtle Programming

Overview
To conclude their introduction to programming, students will design a program

that draws a digital scene of their choosing. Students will be working in groups

of 3 or 4 and will begin by identifying a scene they wish to create. They will then

use Top-Down Design to identify the high-level functions necessary to create

that image. The group will then assign these components to individual members

of the group to program. After programming their individual portion, students will

combine all of their code to compose the whole scene. The project concludes

with reflection questions similar to those students will see on the AP®

Performance Tasks.

Note: This is NOT the official AP Performance Task that will be submitted as part

of the Advanced Placement exam; it is a practice activity intended to prepare

students for some portions of their individual performance at a later time.

AP® is a trademark registered and/or owned by the College Board, which was

not involved in the production of, and does not endorse, this curriculum.

Purpose
Abstraction is an important tool in programming, not only because it allows

individual programmers to break down complex problems, but because it

enables effective forms of collaboration. Once a problem has been broken down

into its component parts, teams of programmers (sometimes dozens or more)

can attack individual components of that problem in parallel. This style of

programming requires clear communication and a shared understanding of the

high-level requirements of the software. If implemented carefully, however, it can

be an effective strategy for rapidly producing large and complex pieces of

software.

Agenda
Getting Started
Activity

Review the Project
Complete Group Project Planning Guide
Start Programming
Written Reflection and Project Submission

Wrap Up
Assessment
Extended Learning

Objectives
Students will be able to:

Write programs that address one component of a

larger programming problem and integrate with other

similarly designed programs.

Collaborate to break down a complex programming

problem into its component parts.

Use code written by other programmers to complete

a larger programming task.

Links
For the Students

Design a Digital Scene - Planning Guide (PDF |

DOCX)

Design a Digital Scene - Project Overview and
Rubric (PDF | DOCX)

Unit 3 on Code Studio

Vocabulary
Abstraction - Pulling out specific differences to

make one solution work for multiple problems.

https://docs.google.com/document/d/1piOp7zsljj_cpUs5yEy5-9EH3Zh7iD2LdzsyaEJDKcE/
https://docs.google.com/document/d/1piOp7zsljj_cpUs5yEy5-9EH3Zh7iD2LdzsyaEJDKcE/export?format=pdf
https://docs.google.com/document/d/1piOp7zsljj_cpUs5yEy5-9EH3Zh7iD2LdzsyaEJDKcE/export?format=doc
https://docs.google.com/document/d/1aWGZCnkozPfDKGiFxCJhr0LH_zHTgEVoZcDYQPNpsFY/
https://docs.google.com/document/d/1aWGZCnkozPfDKGiFxCJhr0LH_zHTgEVoZcDYQPNpsFY/export?format=pdf
https://docs.google.com/document/d/1aWGZCnkozPfDKGiFxCJhr0LH_zHTgEVoZcDYQPNpsFY/export?format=doc
https://studio.code.org/s/csp3

 Teaching Tip

Reflection Submissions: Make a determination of how best
students can submit their reflection responses. On the actual
Performance Tasks, students will be required to submit all of their
documents in a single PDF document, but you do not need to
enforce this requirement at this point in the year.

 Suggested Project Pacing

A proposed schedule of the steps of this project is included below,
as well as more thorough explanations of how to conduct the
various stages.

Day 1

Review the project guidelines and the rubric.

Assign students to groups to follow the Group Project Planning

guide.

Groups complete the Project Description document.

Groups break target scene into high-level functions, define their

behavior and complete the Project Component Table.

Students begin programming individual components.

Day 2

Students continue to work on programming their individual

functions.

Groups begin to recombine their functions and students begin

work on their digital scenes.

Day 3

Students finalize their digital scenes.

Students complete their reflection questions and submit their

projects.

Teaching Guide
Getting Started

Goal: Review the programming constructs covered thus far, recall how they can be used within Top-Down Design to break down problems,

and frame the coming project as a further exploration of the concept of abstraction.

Activity

 Design a Digital Scene

Review the Project
Distribute: Give each student a copy of:

Design a Digital Scene - Project Overview and Rubric
Design a Digital Scene - Planning Guide

Read Requirements: Read through the guidelines of the

project together and address any high-level questions about

the aims of the project. Students will have a chance to review

the requirements once placed in groups.

Place Students in Groups: Groups will ideally be 3 or 4

students for this project. You may place students in groups

yourself or allow them to select their partners.

Complete Group Project Planning Guide
Groups should use the Activity Guide’s Group Project
Planning Guide to collaboratively develop their scene

description and select a target image. They will then fill in the

Project Component Table with the individual components of the

scene, as well as their associated function names and

descriptions. Finally, they will assign each function to one of the

group members.

Start Programming

 Code Studio levels

Written Reflection and Project Submission
Reflection Questions: Students will complete the reflection

questions included in Design a Digital Scene - Project
Overview and Rubric.

Project Submission: Students will submit their projects. They

can hand in a printed copy of their Design a Digital Scene -
Planning Guide and can submit their Digital Scenes directly

through Code Studio, but they will need instructions on how best

to submit their reflection responses.

Wrap Up

Levels 1 2 (click tabs to see student view)

How To: Share Code with Teammates Student Overview

Levels 4 (click tabs to see student view)

https://docs.google.com/document/d/1aWGZCnkozPfDKGiFxCJhr0LH_zHTgEVoZcDYQPNpsFY/
https://docs.google.com/document/d/1piOp7zsljj_cpUs5yEy5-9EH3Zh7iD2LdzsyaEJDKcE/
https://docs.google.com/document/d/1aWGZCnkozPfDKGiFxCJhr0LH_zHTgEVoZcDYQPNpsFY/
https://docs.google.com/document/d/1piOp7zsljj_cpUs5yEy5-9EH3Zh7iD2LdzsyaEJDKcE/

Wrap Up

Presentation (Optional): If time allows, students may wish to have an opportunity to share their digital scenes with one another. One option

is to print out their digital scenes, but consider other options like creating a “Digital Art Gallery” by posting all links to a shared document.

Assessment

Rubric: Use the provided rubric (in Design a Digital Scene - Project Overview and Rubric), or one of your own creation, to assess

students’ submissions.

After this lesson, you can choose to administer the assessment.

Extended Learning

Incorporate Another Group’s Functions: Students who finish early or wish to have an added challenge can attempt to incorporate the

functions of another group into their digital scenes.

Standards Alignment

CSTA K-12 Computer Science Standards

CL - Collaboration

CPP - Computing Practice & Programming

CT - Computational Thinking

Computer Science Principles

2.2 - Multiple levels of abstraction are used to write programs or create other computational artifacts

4.1 - Algorithms are precise sequences of instructions for processes that can be executed by a computer and are implemented using

programming languages.

5.1 - Programs can be developed for creative expression, to satisfy personal curiosity, to create new knowledge, or to solve problems

(to help people, organizations, or society).

5.3 - Programming is facilitated by appropriate abstractions.

5.4 - Programs are developed, maintained, and used by people for different purposes.

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://docs.google.com/document/d/1aWGZCnkozPfDKGiFxCJhr0LH_zHTgEVoZcDYQPNpsFY/
http://creativecommons.org/
file://code.org/contact

	Unit 3 - Algorithms and Programming
	Chapter 1: Programming Languages and Algorithms
	Big Questions
	Enduring Understandings
	Week 1
	Lesson 1: The Need for Programming Languages
	Lesson 2: The Need for Algorithms
	Lesson 3: Creativity in Algorithms
	Concept Invention | Unplugged | Algorithms

	Week 2
	Lesson 4: Using Simple Commands
	Turtle Programming

	Lesson 5: Creating Functions
	Turtle Programming

	Lesson 6: Functions and Top-Down Design
	Turtle Programming

	Week 3
	Lesson 7: APIs and Using Functions with Parameters
	Lesson 8: Creating Functions with Parameters
	Lesson 9: Looping and Random Numbers
	Turtle Programming

	Week 4
	Lesson 10: Practice PT - Design a Digital Scene
	Turtle Programming

	Chapter Commentary
	Unit 3 Chapter 1 - What’s the story?
	Our approach to the Content

	Lesson 1: The Need for Programming Languages
	Overview
	Objectives
	Students will be able to:

	Purpose
	Preparation
	Links
	For the Students

	Agenda

	Teaching Guide
	Getting Started (2 mins)
	Welcome to Unit 3!

	Activity (25 mins)
	LEGO Instructions Activity

	Wrap Up (15 mins)
	Discussion: Why is writing instructions hard?
	The Need for Programming Languages

	Assessment
	Extended Learning
	Standards Alignment
	CSTA K-12 Computer Science Standards
	Computer Science Principles

	Lesson 2: The Need for Algorithms
	Overview
	Objectives
	Students will be able to:

	Links
	For the Teacher
	For the Students

	Purpose
	Vocabulary
	Agenda

	Teaching Guide
	Getting Started (5 mins)
	Recall the lessons learned about language
	Define: Algorithm

	Activity 1 (30 mins)
	Find Min Card Algorithm
	Discuss - Define a language

	Activity 2 (30 mins)
	The "Human Machine" Language
	Challenge: Find Min with the Human Machine Language
	Share solutions to Find Min with the Human Machine Language

	Wrap Up (10 mins)
	Discuss - The "Art" of Programming

	Standards Alignment
	Computer Science Principles

	Lesson 3: Creativity in Algorithms
	Concept Invention | Unplugged | Algorithms
	Overview
	Objectives
	Students will be able to:

	Purpose
	Preparation
	Links
	For the Teacher
	For the Students

	Vocabulary
	Agenda

	Teaching Guide
	Getting Started (5 mins)
	Conclusions from Find Min
	Creativity in Algorithms

	Activity (25 mins)
	Adding SWAP to Human Machine Language
	Challenge: Min-to-Front

	Wrap Up (15-20 mins)
	Review Min-to-Front Solutions
	Identify Sequencing, Selection, Iteration in Human Machine programs
	Discussion
	Video: You Should Learn to Program: Christian Genco at TEDxSMU - Video

	Extended Learning
	Assessment
	Standards Alignment
	Computer Science Principles

	Lesson 4: Using Simple Commands
	Turtle Programming
	Overview
	Objectives
	Students will be able to:

	Purpose
	Preparation
	Links
	For the Teacher
	For the Students

	Vocabulary
	Introduced Code
	Agenda

	Teaching Guide
	Getting Started (5 mins)
	Recall challenges of the Algorithms Activities
	Introduce the challenge and fun of programming

	Activity (30 mins)
	Introduction to App Lab
	Turtle programming problems in Code Studio (up to 3x3 grid)
	Code Studio levels

	Wrap-up (15 mins)
	Discussion: What does “efficiency” mean when programming?
	What's the point? Why constrain to 4 commands

	Extended Learning
	Assessment
	Standards Alignment
	CSTA K-12 Computer Science Standards
	Computer Science Principles

	Lesson 5: Creating Functions
	Turtle Programming
	Overview
	Objectives
	Students will be able to:

	Purpose
	Preparation
	Links
	For the Teacher
	For the Students

	Vocabulary
	Agenda
	Introduced Code

	Teaching Guide
	Getting Started (5 min)
	Thinking Prompt - Simplifying the 3x3 Challenge
	Transition - Introduction to Functions

	Activity (35 min)
	Transition to Code Studio
	Code Studio levels

	Wrap-up (10 min)
	Reflection on benefits of functions

	Assessment
	Assessing Programs
	Questions

	Extended Learning
	Share and Compare
	Keeping Going!

	Standards Alignment
	CSTA K-12 Computer Science Standards
	Computer Science Principles

	Lesson 6: Functions and Top-Down Design
	Turtle Programming
	Overview
	Objectives
	Students will be able to:

	Preparation
	Purpose
	Links
	For the Students

	Vocabulary
	Agenda

	Teaching Guide
	Getting Started (5 min)
	What Does Efficiency Mean?

	Activity
	Distribute Worksheet
	Transition to Code Studio
	Code Studio levels

	Wrap-up
	Some points about functions and abstraction:

	Assessment
	Assessing Programs
	Questions

	Standards Alignment
	CSTA K-12 Computer Science Standards
	Computer Science Principles

	Lesson 7: APIs and Using Functions with Parameters
	Overview
	Objectives
	Students will be able to:

	Purpose
	Preparation
	Links
	For the Students

	Vocabulary
	Agenda
	Introduced Code

	Teaching Guide
	Getting Started (5 mins)
	Activity (40 mins)
	Learning the API and Using Functions with Parameters
	Code Studio levels

	Wrap Up (5 mins)
	Reviewing Vocabulary
	Share Your Images

	Assessment
	Extended Learning
	Standards Alignment
	Computer Science Principles

	Lesson 8: Creating Functions with Parameters
	Overview
	Objectives
	Students will be able to:

	Preparation
	Purpose
	Links
	For the Students

	Vocabulary
	Introduced Code
	Agenda

	Teaching Guide
	Warm Up (5 mins)
	Recall the Purpose of Parameters

	Activity (40 mins)
	Writing Functions with Parameters: Under the Sea
	Code Studio levels

	Wrap Up (5 min)
	When do you need a function with a parameter?

	Assessment
	Extended Learning
	Standards Alignment
	Computer Science Principles

	Lesson 9: Looping and Random Numbers
	Turtle Programming
	Overview
	Objectives
	Students will be able to:

	Preparation
	Purpose
	Links
	For the Teacher
	For the Students

	Vocabulary
	Agenda

	Teaching Guide
	Getting Started (2 minutes)
	Loops versus Functions

	Activity (30 minutes)
	Improving Under The Sea with Loops
	Code Studio levels

	Wrap Up (10 minutes)
	When to use loops versus functions

	Assessment
	Extended Learning
	Standards Alignment
	CSTA K-12 Computer Science Standards
	Computer Science Principles

	Lesson 10: Practice PT - Design a Digital Scene
	Turtle Programming
	Overview
	Objectives
	Students will be able to:

	Links
	For the Students

	Purpose
	Vocabulary
	Agenda

	Teaching Guide
	Getting Started
	Activity
	Review the Project
	Complete Group Project Planning Guide
	Start Programming
	Code Studio levels
	Written Reflection and Project Submission

	Wrap Up
	Assessment
	Extended Learning
	Standards Alignment
	CSTA K-12 Computer Science Standards
	Computer Science Principles

