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#3

Analyze and Evaluate a Truss
Learning Activity #3:

Overview of the Activity
In this learning activity, we will analyze and evaluate one of the main trusses from the Grant Road Bridge.   

We will create a mathematical model of the truss, then use this model as the basis for a structural analysis—a 
series of mathematical calculations to determine the internal force in every member of the truss.  We will also 
use the experimental data from Learning Activity #2 to determine the strength of each truss member.  Finally we 
will perform a structural evaluation—a comparison of the internal forces and strengths, to determine whether 
or not the truss can safely carry its prescribed loads.

Why?
Engineering design is an iterative process.  To create an optimal design, the engineer must develop many 

different alternative solutions, evaluate each one, and then select the alternative that best satisfies the design 
requirements.   But how are these alternative solutions evaluated?  Engineers use many different criteria to 
evaluate a design; but in structural design, the most important of these criteria is the structure’s ability to carry 
load safely.  In most cases, an evaluation of structural safety can only be done mathematically.  It would be 
impractical, uneconomical, and unsafe for the structural engineer to evaluate a bridge design by building a 
full-size prototype, then running heavy trucks across the structure to determine if it is strong enough.  When a 
structure is built, it must be strong enough to carry its prescribed loads.  The engineer must get it right the first 
time.  For this reason, the structural engineer must be able to mathematically model, analyze, and evaluate the 
structure with a high degree of accuracy—and without the benefit of prototype testing.  In this activity, you will 
learn how an engineer performs a structural evaluation.  In Learning Activity #5, you will apply this process to 
design your own truss bridge. 
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Learning Objectives
As a result of this learning activity, you will be able to do the following:

n Calculate the components of a force vector.

n Add two force vectors together.

n Explain the following structural engineering concepts: free body diagram, equilibrium, structural model, sym-
metry, static determinacy, stability, and factor of safety.

n Use the Method of Joints to calculate the internal force in every member in a truss.

n Determine the strength of every member in a truss.

n Evaluate a truss, to determine if it can carry a given load safely.

Key Terms
To successfully complete this learning activity, you must understand the following key terms and concepts from 

Learning Activities #1 and #2:

truss deck internal force tensile strength 

 member load tension compressive strength 

 joint reaction compression failure 

If you have forgotten any of these terms, it would be a good idea to review their definitions in the Glossary 
(Appendix D) before proceeding.

Information

Analysis
An analysis is an examination of a complex system, usually conducted by breaking the system down into its 

component parts.  Once they are identified, the component parts and their relationships to the system as a whole 
can be studied in detail.  For example, suppose your baseball team has been losing a lot of games, and you want to 
figure out why.  Your team is a complex system.  There are a lot of possible reasons why it might not be 
functioning as well as it could.  To analyze the performance of the team, you’ll need to break it 
down into its component parts.  The obvious way to do this is to look at the team’s individual 
members—nine players and a coach.  But the team can also be broken down by its functions—
hitting, pitching, fielding, and base running.  To perform the analysis, you would look at each 
team member and each function in detail.  You would examine batting, pitching, and fielding 
statistics, to determine whether poor performance in any of these areas might be responsible 
for the team’s losing record. You might discover, for example, that the team’s batting average 
against left-handed pitching has been particularly poor.  This important analysis result might 
be used as the basis for designing a practice regimen to correct the problem.

Structural Analysis
A structural analysis is a mathematical examination of a structure, conducted by breaking the structure down 

into its component parts, then studying how each part performs and how each part contributes to the performance 
of the structure as a whole.  Usually, the products of a structural analysis are (1) reactions, (2) internal member 
forces, and (3) deflections—how much the structure bends or sways when it is loaded.  Like the analysis of your 
baseball team, structural analysis is often used to determine if the system is performing as intended and, if it is not, 
to correct the problem.
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There is an important difference between structural analysis and structural design.  Structural analysis is 
concerned with examining existing structures to determine if they can carry load safely.  Structural design is 
concerned with creating new structures to meet the needs of society.  Though analysis and design are fun-
damentally different activities, they are closely interrelated—analysis is an integral part of the design process.  
We’ll see how analysis and design fit together in Learning Activity #4.

To perform a structural analysis, we will apply a variety of mathematical tools from geometry, trigonometry, 
and algebra, as well as some basic concepts from physics.   These concepts are reviewed in the following 
sections.

Some Basic Concepts from Trigonometry
A truss is a structure composed of members arranged in interconnected triangles.  For this reason, the 

geometry of triangles is very important in structural analysis.  To analyze a truss, we must be able to mathemati-
cally relate the angles of a triangle to the lengths of its sides.  These relationships are part of a branch of math-
ematics called trigonometry.   Here we will review some basic concepts from trigonometry that are essential 
tools for truss analysis.

This diagram shows a right triangle—a triangle with one of its three angles measuring 
exactly 90o.  Sides a and b form the 90o angle.  The other two angles, identified as θ1 and θ2, are 
always less than 90o.  Side c, the side opposite the 90o angle, is always the longest of the three 
sides.  It is called the hypotenuse of the right triangle.  

Thanks to an ancient Greek mathematician named Pythagoras, we can easily calculate the 
length of the hypotenuse of a right triangle.  The Pythagorean Theorem tells us that

The Pythagorean Theorem shows how the lengths of the sides of a right triangle are related to each other.  
But how are the lengths of the sides related to the angles?  Consider the definitions of two key terms from 
trigonometry—sine and cosine.  Both definitions are based on the geometry of a right triangle, as shown above.  
The sine of an angle (abbreviated “sin”) is defined as the length of the opposite side divided by the length of 
the hypotenuse.  For example, the sine of the angle θ1 would be calculated as

In this case, side a is designated as the “opposite side,” because it is farthest from the angle θ1.  For the angle 
θ2, the opposite side is b; thus, the sine of θ2 is

The cosine of an angle (abbreviated “cos”) is defined as the length of the adjacent side divided by the 
length of the hypotenuse.  Applying this definition to our example, we have
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It is important to recognize that the sine and cosine of an angle do not depend on the 
overall size of the triangle—only on the relative lengths of its sides.  In the diagram at right, 
three different right triangles (ABC, ADE, and AFG) are drawn with a common angle 
θ1.  It doesn’t matter which of the three triangles you use to calculate the 
sine and cosine of θ1.  You’ll get the same answers in all three cases, 
because the relative lengths of the sides are all the same.

We’ll see important applications of the sine and cosine when we analyze a truss, later in this learning activity.

Working with Vectors
A force can be represented as a vector—a mathematical quantity that has both magnitude and direction.  When 

we perform a structural analysis, we will calculate both the magnitude and direction of every force that acts on the 
structure.  Thus, before when can analyze a structure, we need to learn how to work with vectors.  Specifically, we 
need to learn two basic concepts from vector math—breaking a vector into its components and adding vectors 
together. 

Breaking a Vector into its Components
When we analyze a truss, we will need to describe the directions of force vectors 

mathematically.  To do this, we must first define a coordinate axis system.  For a two-
dimensional structure, we normally use an x-axis to represent the horizontal direction 
and a y-axis to represent the vertical.  Once the coordinate axis system is established, 
we can represent the direction of any vector as an angle measured from either the 
x-axis or the y-axis.  For example, the force vector at right has a magnitude (F) of 20 
newtons and a direction (θ) of 50 degrees, measured counterclockwise from the 
x-axis. 

This force can also be represented as two equivalent forces, one in the x-direction 
and one in the y-direction.  Each of these forces is called a component of the vector F.  
To determine the magnitudes of these two components, visualize a right triangle with 
the vector F as the hypotenuse and the other two sides parallel to the x-axis and y-axis.  
If F is the length of the hypotenuse, then the lengths of the two perpendicular sides 
are exactly equal to the x-component and y-component of F.  We use the symbol Fx to 
represent the x-component of F and the symbol Fy to represent the y-component.  
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From trigonometry, we can apply the definitions of the sine and the cosine to calculate the two components.  
Recall that

From the diagram on the previous page, we can see that Fy is the opposite side of the triangle, and F is the 
hypotenuse.  Substituting, we get 

If we multiply both sides of this equation by F, we get

Similarly, 

Therefore, if we know the magnitude (F) and direction (θ) of a force, then we can use the equations above to 
calculate the two components of the force.  

The diagram at right shows the correct way to represent the force F and its 
components—with all three vectors originating from the same point.  The two 
dotted lines show that Fx and Fy are the same lengths as the sides of a right triangle 
with F as its hypotenuse. 

Returning to our example, if we substitute the actual numerical values F=20N and 
θ=50°, and use a calculator to determine the sine and cosine of the angle, we get the 
following results

The small arrows to the right of the answers indicate the directions of the Fy and Fx vectors.  When we write 
a vector quantity, we must always be careful to show both its magnitude and direction.  

But what do these numbers really mean?  Suppose you kick a 
soccer ball with a single 20-newton force at an angle of 50o.  This 
force will cause the ball to move a particular direction and distance.  
Now suppose that two players kick the ball simultaneously—one 
with a 15.3-newton force in the y-direction and one with a 
12.9-newton force in the x-direction.  In this case, the ball will 
respond exactly as it did when you kicked it with the single 20-new-
ton force.  The ball will move the same direction and distance, 
because it “feels” exactly the same force.  The two components of a 
force are exactly equivalent to that force and will produce exactly 
the same effect on an object. 

The two components of a force are exactly 
equivalent to that force.



3-6

Adding Vectors Together
When two or more forces are applied to an object, it is often necessary to calculate the total force on the object.  

We calculate the total force by simply adding all of the individual force vectors together.  To add vectors, however, 
we must follow an important rule:or

To add vectors whose directions are not the same, we must do the following:

 n Break each vector into its equivalent x-component and y-component.

 n Add all of the x-components together.

 n Add all of the y-components together.

As an example, let’s add the two forces F1 and F2, shown at right.  We 
begin by calculating the components of the two vectors:

Again the direction of each vector component is indicated with an 
arrow.  We must pay careful attention to these directions when we add 
components together.  Note that F1x and F2x point in opposite directions.  
The directions of F1y and F2y are also opposite.  

When we add the x-components, we will assume that the direction 
indicated by the x-axis is positive.  Then the sum of the two x-components is

  

In this equation, F1x is positive, because it points to the right—the same direction as the positive x-axis.  F2x is 
negative, because it points to the left—opposite the direction of the positive x-axis.  The answer is negative, which 
means that the x-component of the total force is to the left.  We write the final answer as

The magnitudes of two or more vectors can be added together only if their directions are the same.
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* Actually, there are three equilibrium conditions for a two-dimensional structure.  In addition to the two described above, 
the sum of the moments about any point must also equal zero.  The concept of a moment is a very important one; however, 
it is beyond the scope of this book.  The problems used in this and subsequent learning activities have been chosen so that 
this third equilibrium condition is not required to obtain a correct solution.

Assuming that the direction of the positive y-axis (upward) is positive, the sum of the y-components is 

In this case, the total is positive, so we conclude that the y-component of the total force is upward.  

The total force and its two components are illustrated at right.  If we 
needed to know the actual magnitude of FTOTAL we could calculate it by 
using the Pythagorean Theorem; however, for this learning activity, we 
will only need to calculate the total x-component and the total y-com-
ponent, as shown here.

Equilibrium
In Learning Activity #1, we defined equilibrium as a condition in which the total force acting on an object is 

zero. Now that we know how to actually calculate the total force on an object, we can apply the concept of 
equilibrium as a powerful problem-solving tool.  Specifically, if we know that an object is in equilibrium—
because it is not moving—then we know that the total force on that object is zero; and we can use this fact to 
calculate the magnitude and direction of unknown forces acting on the object. 

Because we calculate total force by adding up the x-components and y-components separately, there are really 
two conditions that must be satisfied if an object is in equilibrium.*

  First, the sum of the x-components of all forces acting on the structure must be zero.     
We write this condition as

where the symbol Σ means “the sum of,” and the entire expression is read, “The sum of the forces in the 
x-direction equals zero.”

The second equilibrium condition is that the sum of all forces in the y-direction must equal zero,   
which we write as

These two equations are commonly known as the equations of equilibrium.  They are simple yet powerful 
mathematical tools, with many different applications in science and engineering.  In this learning activity, the 
equations of equilibrium will enable us to calculate the reactions and internal member forces in a truss.

Creating a Structural Model
A structural model is a mathematical idealization of a structure—a series of simplifying assumptions about 

the structure’s configuration and loading that allow us to predict its behavior mathematically.  

When we model a two-dimensional truss, we typically make the following general assumptions:

 n The truss members are perfectly straight.

 n The joints that connect the truss members together are frictionless pins.

 n Loads and reactions are applied only at the joints.
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Free Body Diagram of the 

nutcracker truss

Taken together, these assumptions imply that the members of a truss do not bend.  Truss members are assumed 
to carry load either in pure tension or in pure compression.  These assumptions allow us to use a simple type of 
structural analysis that ignores the effects of bending. 

None of these assumptions is perfectly accurate, however.  In an actual truss bridge, members are never per-
fectly straight, due to minor variations in the manufacturing and fabrication processes.  Modern trusses use gusset 
plate connections, which do not behave like pins; and even in older bridges with pinned connections, the pins are 
certainly not frictionless.  Furthermore, actual trusses can never be loaded entirely at the joints, if only because the 
weight of the members themselves is distributed throughout the structure.  Fortunately, the inaccuracies in our 
assumptions generally produce only minor inaccuracies in our structural analysis results, and experienced engi-
neers know how to compensate for these small errors to ensure the safety of their designs.

Having made these general assumptions about the structure, we must also make a number of specific decisions 
about how to represent the particular truss we are modeling.  These decisions include:

 n The geometric configuration of the truss, including the locations of all joints, the configuration of    
 the members, and all relevant dimensions.

 n The configuration of the supports.

 n The magnitude and direction of the loads that will be applied to the structure.

Once we have decided how we will represent the structure, supports, and loads, we should always complete 
the modeling process by creating one or more drawings that clearly illustrate the structural model. 

The Free Body Diagram
One of the most important tools in structural engineering is a simple sketch called the free body diagram.   

A free body diagram is a drawing of a “body”—a structure or a portion of a structure—showing all of the forces 
acting on it.   Drawing a free body diagram is the essential first step in any structural analysis.

To draw a free body diagram:

n Draw the outline of the structure, completely isolated from its surroundings.  Do not show any of the supports 
 that connect the structure to its foundations.

n At the location of each support, draw and label the appropriate reactions.  

n Draw and label all of the loads applied to the structure.

n Draw all relevant dimensions.

n Draw the x-y coordinate axis system.

In Learning Activity #1, we built a simple three-member truss by tying a short 
piece of string to the handles of a nutcracker.  We then applied a 10-newton down-
ward load to the top of the structure. The free body diagram for our nutcracker truss 
is shown here. Note that the downward 10-newton load is resisted by two upward 
reactions at the bottom ends of the handles.  Because the magnitudes of these forces 
are unknown, they are labeled RA and RB.  The three joints of the truss are labeled A, 
B, and C, for future reference.
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Calculating Reactions
Reactions are forces developed at the supports of a structure, to keep the structure in equilibrium.  Given 

that the reactions RA and RB on our nutcracker truss are in the y-direction, we can determine their magnitude 
using the equilibrium equation

Assuming that the upward direction is positive, the sum of the forces in the y-direction is

 

   or

 

Because the structure, the load, and the supports are all symmetrical about the centerline of the nutcracker, 
the two reactions labeled RA and RB must be equal.  To understand why this is true, try the simple experiment 
illustrated below.  Set up two scales a few inches apart, and lay a book across them.  Ensure that the book is 
centered between the two scales.  Then place a relatively heavy object like a full can of soup on top of the book.  
Gradually slide the soup can from one end of the book to the other, and watch the readings on the two scales as 
you move the can.  You will notice that, when the can is perfectly centered between the two scales, the readings 
on the scales are exactly equal.  At any other position, the readings are unequal.  In this experiment, the soup 
can is the load; the book is the structure, and the scales directly measure the two reactions.  The experiment 
clearly demonstrates that the reactions are equal if the loads, the supports, and the structure itself are sym-
metrical about a vertical centerline.
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When the load is centered, the readings on the two scales are equal.  Otherwise, the readings are unequal.
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If the two reactions of our nutcracker truss are equal, then

 

If we substitute this expression into the equilibrium equation on the previous page, we get

And since RA=RB, 

 

How do we calculate the reactions if the structure, the loads, or the supports are not symmetrical?  This calcula-
tion requires the use of a third equilibrium condition—the condition that the sum of the “moments” about any 
point is zero.  The concepts of “moments” and “moment equilibrium” are quite important but are beyond the scope 
of this book.  All of the bridges we analyze and design here will be symmetrical.

Calculating Internal Member Forces
Once the reactions have been calculated, we can use a technique called the Method of Joints to calculate the 

internal member forces in a truss.  To use the Method of Joints, we will use the following procedure:

1) Isolate one joint from the truss.  

2) Draw a free body diagram of the joint.  

3) Write and solve the equations of equilibrium to determine the member forces. 

4) Repeat the process for the remaining joints.

Let’s use our nutcracker truss to illustrate how the Method of Joints is used to analyze a structure.

Step 1: Isolate one joint from the truss.
We’ll begin our analysis with Joint A, at the lower left-hand corner of the truss.  

When you isolate a joint, imagine that you are physically cutting it out of the truss 
with a sharp scissors.  You must cut through all of the members that connect the 
joint to the remainder of the structure.  To isolate Joint A, you’ll need to cut through 
Members AC (the handle) and AB (the string), as shown at right. 

Step 2: Draw a free body diagram of the joint.  
Now that we have cut Joint A out of the truss, we will draw a free body diagram 

of the joint itself.  Like the diagram of the entire truss, this free body diagram must 
include any loads and reactions acting on the “body.”  Thus the upward reaction RA 
is included, along with its known magnitude of 5 newtons.

In addition to the external loads and reactions, the free body diagram of Joint A must 
also include the internal member forces FAB and FAC.  When we isolated the joint, we cut 
through Members AC and AB, thus “exposing” the internal forces in these members.  We 
don’t know the magnitudes of the two internal forces, so we simply label them with the 
variables FAB and FAC.   We also don’t know the directions of these forces.  For now, we will 
simply assume that they are in tension.  When a member is in tension, it pulls on the joint; 
thus, we indicate tension by showing the FAB and FAC vectors pointing away from the joint, 

BA RR =  

10R2RRRR BBBBA ==+=+  

↑=+= NN 55RB  

↑= N5RA  
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along the centerlines of their respective members.  Remember that we have only assumed FAB and FAC to be in 
tension.  We will check this assumption when we solve the equations of equilibrium in Step 3. 

Step 3: Write and solve the equations of equilibrium.
When a structure is in equilibrium, every part of that structure must also be in equilibrium.  We know that 

our nutcracker truss is in equilibrium, because it isn’t moving; therefore, Joint A must be in equilibrium as well.  
Because Joint A is in equilibrium, we can write its two equilibrium equations.  Let’s start with the sum of forces 
acting in the y-direction.  To write this equation, look at the free body diagram of Joint A, and identify every 
force that acts in the y-direction or has a component in the y-direction.  Each of these forces must appear in the 
equilibrium equation.  Assuming that the upward direction is positive, 

To write this equation, it was necessary to break the force vector FAC into its 
x-component and y-component, as shown at right.  The y-component is FACsin65°, and 
because it points upward, it is positive.  The x-component is FACcos65°, but this com-
ponent does not appear in the ΣFy equilibrium equation, because it does not act in  
the y-direction.

Since this equation has only one unknown variable, we can calculate sin65° and 
solve for FAC directly:

Because the answer is negative, our initial assumption about the direction of FAC must have been incorrect.  
We assumed that the force FAC is in tension; the negative answer tells us it is in compression.  We can now write 
the final answer as 

  

Note that, for internal forces, we do not show the direction of the force vector with an arrow; rather we 
simply label the force as either tension or compression.

Now we can write the second equilibrium equation—the sum of the forces in the x-direction—for Joint A.  
Again look at the free body diagram of the joint, and identify every force that acts in the x-direction or has a 
component in the x-direction.  Include each of these forces in the equilibrium equation:

 

Note that the x-component of the force FAC appears in this equation, while the y-component does not.   
To solve the equation, we must calculate cos65°, substitute the value of FAC we calculated above, and then  
solve for FAB.

 

  

 

 

 

    

 

  

 

  

 

 

 

    

 

  

 

  

 

 

 

    

 

  

 

  



3-12

Step 4: Repeat the process for the remaining joints.
Next we will apply the same solution process to Joint C.  We begin by isolating the 

joint—cutting through the two handles, AC and BC.  When we cut through these two 
members, we expose their internal forces FAC and FBC.  Thus these two forces must be 
included on the free body diagram, along with the 10-newton load.  

Note that both internal forces are again shown pointing away from the joint, indicating 
tension.  This might appear to be incorrect, since we already know that FAC is in compres-
sion.  In fact, it is not an error but a technique to help prevent errors.  To ensure that there 
is mathematical consistency when we move from joint to joint, it is best to always show 
internal member forces acting in tension.  When our calculations show that a force is 
actually in compression, we write its magnitude as a negative number.  The minus sign 
ensures that it is mathematically represented as a compression force in the equilibrium 
calculation.    (We’ll see how this works shortly.)

On the free body diagram, we can see that the two handles are connected together at an angle of 50°.  It is also 
important to recognize that each handle forms an angle of 65° measured from horizontal.  If you have studied plane 
geometry, you should be able to prove that this is true.

Again, once we have carefully drawn the free body diagram of the joint, we can write an equilibrium equation to 
determine the unknown member force FBC.  In this case, either equation will do the job.  Let’s use the sum of the 
forces in the y-direction:

 

Now we can substitute the calculated value of FAC and solve for FBC.  Remember that FAC is in compression, so 
the value you substitute must have a minus sign.

We shouldn’t be surprised that FBC turns out to be exactly the same as FAC.  Given that the structure, loads, and 
reactions are all symmetrical, it certainly makes sense that the compression forces in the two handles are also the 
same.  Nonetheless, it is reassuring that our mathematical equations and our common sense both produce the 
same result.  For further reassurance, try writing the second equilibrium equation, ΣFx=0, for Joint C.  This calcula-
tion will also show that FBC=-5.52 newtons.  If you write the equilibrium equations for Joint B, you will again find that 
FBC=5.52 newtons (compression) and FAB=2.33 newtons (tension).

Static Determinacy and Stability
The Method of Joints is a simple, powerful tool for calculating the forces in truss members.  Unfortunately, the 

method does not work for all trusses.  If a structure has more unknown member forces and reactions than the 
number of available equilibrium equations, then the Method of Joints is not sufficient to perform the structural 
analysis.  A structure that cannot be analyzed using the equations of equilibrium alone is called statically inde-
terminate.  A structure that can be analyzed using the equations of equilibrium alone is called statically determinate.  
Only statically determinate trusses can be analyzed with the Method of Joints.

A statically determinate truss with two reactions must satisfy the mathematical equation
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A statically indeterminate truss.

A statically determinate truss.

An unstable truss.

The loads applied to structures are highly unpredictable.

where j is the number of joints and m is the number of members.  For example, 
our nutcracker truss has 3 members and 3 joints.  Substituting these numbers 
into the equation above, we find that 2j and m+3 are both equal to 6, so the 
mathematical condition for static determinacy is satisfied.  If 2j is less than m+3, 
then the truss is statically indeterminate.  For example, the truss at right has 6 
joints and 10 members.  Thus 2j is 12, and m+3 is 13.  Since 2j is less than m+3, the 
structure is indeterminate.  Such a structure cannot be analyzed using the 
equations of equilibrium alone.  If you tried to use the Method of Joints to 
analyze this truss, you would find that you have more unknown forces than you 
have equations available to solve for them.  It is possible to analyze a statically 
indeterminate structure, but the solution process requires advanced engineer-
ing concepts that are beyond the scope of this book.

If 2j is greater than m+3, then the truss is unstable.  An unstable truss does not 
have enough members to form a rigid framework.  Such a structure cannot carry 
any load. 

In general, a truss is stable if all of its members are arranged in a network of 
interconnected triangles.  For example, the simple truss at right is composed of 6 
joints and 9 members, which together form four interconnected triangles (ABF, 
BCF, CEF, and CDE).  This truss also satisfies the mathematical condition for 
determinacy, since both 2j and m+3 are equal to 12.

If member CF is removed, however, the truss becomes unstable.  Without its 
diagonal member, the center panel of the truss now consists of a rectangle 
(BCEF) formed by four members, rather than two triangles (BCF and CEF).  This 
configuration is unstable because there is nothing to prevent the rectangle BCEF 
from distorting into a parallelogram, as shown below.  (Remember that we 
assume all truss joints to be frictionless pins.)  For this truss, 2j is still 12, while 
m+3 is only 11.  Since 2j is greater than m+3, the mathematical test confirms our 
observation that the truss is unstable.

As you might expect from this example, an unstable truss can generally be 
made stable by simply adding members until an appropriate arrangement of 
interconnected triangles is achieved. 

Factor of Safety
When an engineer designs a structure, he or she must consider many 

different forms of uncertainty.  There are three major types of uncertainty that 
affect a structural design:

n  There is always substantial uncertainty in predicting the 
loads a structure might experience at some time in the 
future.  Wind, snow, and earthquake loads are highly 
unpredictable.  The engineer can never be certain of 
the maximum number of people that might occupy an 
apartment building or the weight of the heaviest truck 
that might cross a bridge.  Truck weights are regulated 
by law in the United States, but illegally heavy trucks 
occasionally do drive our highways, and it only takes 
one of them to collapse a bridge.  You can post a 20-ton 
Load Limit sign on a bridge, but that doesn’t mean the 
driver of a 30-ton truck won’t try to cross it anyway. 
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n The strengths of the materials that are used to build actual bridges are also uncertain.  Manufacturers of con-
struction materials generally pay careful attention to the quality of their products; nonetheless, it is always 
possible for a batch of substandard steel or concrete to be used in a structure.  Even the most conscientious 
construction contractors occasionally make mistakes on a project, and some construction errors can reduce the 
ability of a structure to carry load.

n The mathematical models we use for structural analysis and design are never 100% accurate.  We have already 
seen this in our discussion of structural models—actual trusses do not have perfectly straight members or 
frictionless pinned connections.  Yet we must make these sorts of simplifying assumptions, or the truss analysis 
simply cannot be performed.

The engineer accounts for all forms of uncertainty by making the structure somewhat stronger than it really 
needs to be—by using a factor of safety in all analysis and design calculations.   In general, when it is used in the 
analysis of an existing structure, the factor of safety is a defined as

In a truss, the actual force in a member is called the internal member force, and the force at which failure occurs 
is called the strength.  Thus we can rewrite the definition of the factor of safety as 

For example, if a structural member has an internal force of 5000 pounds and a strength of 7500 pounds, then its 
factor of safety, FS, is

If the factor of safety is less than 1, then the member or structure is clearly unsafe and will probably fail.  If the 
factor of safety is 1 or only slightly greater than 1, then the member or structure is nominally safe but has very little 
margin for error—for variability in loads, unanticipated low member strengths, or inaccurate analysis results.  Most 
structural design codes specify a factor of safety of 1.6 or larger (sometimes considerably larger) for structural 
members and connections.

In Learning Activity #5, we’ll see how the factor of safety is applied in the design process.

 On an Actual Bridge Project

  Load and Resistance Factor Design
The factor of safety has been used in structural engineering for over a century.  In recent years, however, a new 
design philosophy called load and resistance factor design (LRFD) has become increasing popular.  LRFD is 
based on the idea that the largest loading a structural member experiences in its lifetime must be less than the 
smallest possible strength of that member.  In an LRFD-based design, the engineer estimates this “largest 
loading” by adjusting the loads used in the structural analysis.  All loads are multiplied by a code-specified load 
factor—a number that is always greater than 1.  The actual magnitude of the load factor depends on how 
uncertain the loads are.  The self-weight of a structure can be predicted accurately, so it has a relatively low 
load factor (normally 1.2 to 1.4).  Wind, traffic, and earthquake loads are much more unpredictable, so their 
load factors are usually much higher.  To estimate the smallest possible strength of a member, the engineer 
multiplies the nominal member strength by a code-specified resistance factor—a number that is always less 
than 1.  The resistance factor accounts for the possibility of understrength materials, fabrication errors, and 
other uncertainties that may cause a member to be weaker than the engineer intended.  Ultimately load 
factors and resistance factors serve the same function as the factor of safety—they ensure the safety of a 
structure by providing a margin for error.  Many experts view the LRFD as a superior design philosophy, 
because it more accurately represents the sources of uncertainty in structural design. 
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The Problem

The Need
One year after the completion of the new Grant Road Bridge, the Hauptville Town Engineer inspects the 

structure and finds that it is performing well.  Though the bridge has been carrying a lot of traffic, its structural 
members show no signs of distress or deterioration.  Nonetheless, the Town Engineer is still somewhat con-
cerned about the bridge.  Because of a major construction project nearby, many heavily loaded dump trucks 
have been using Grant Road recently.  What if one of these trucks is heavier than the legal weight limit?  How 
much of an overload would cause the structure to collapse?  The Town Engineer decides to perform a complete 
structural evaluation to determine the overall level of safety of the Grant Road Bridge.  He begins by hiring 
Universal Structural Materials Assessment, Inc. to test the strength of the structural members used in the 
bridge.  (We did this part of the structural evaluation in Learning Activity #2.)  Once the Engineer has received 
the test results from Universal, he is ready to begin his analysis. 

Your Job
You are the Town Engineer of Hauptville.  Your job is to analyze the Grant Road Bridge and evaluate its 

overall level of safety.  Specifically, you must calculate the factor of safety for every member in one of the main 
trusses, then determine the overall safety factor for the structure.  

As the Town Engineer, you have the professional responsibility to protect the health and safety of the 
people who use this bridge.  You fulfill this responsibility by performing the structural evaluation consci-
entiously—by using good judgment, by performing calculations carefully and accurately, and by asking a col-
league to check your work.

The Solution

The Plan
Our plan to conduct the structural analysis and evaluation of the Grant Road Bridge    

consists of the following tasks:

n Create the structural model.

n Check the structural model for static determinacy and stability.

n Calculate the reactions.

n Calculate the internal member forces.

n Determine the strengths of the members

n Calculate the factor of safety for every member in the structure

n Evaluate the safety of the structure.

n Check our assumptions.

The Learning Activity
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Create the Structural Model
To model the Grant Road Bridge, we must define (1) the geometry of the structure, (2) the loads, and (3) the 

supports and reactions.  We begin by idealizing the three-dimensional bridge structure as a pair of two-dimensional 
Pratt trusses.  Since these two trusses are identical, we only need to analyze one of them.  The geometry of the truss 
is shown below.  The dimensions indicate the locations of the centerlines of the members.  Joints are identified with 
letters—the same letter designations that were used on the bridge plans provided in Learning Activity #1.  To facili-
tate the analysis, we will assume that the truss members are perfectly straight, the joints are frictionless pins, and 
the loads are applied only at the joints.  We will also assume that the weight of the truss itself is zero.

QQ1
Why did we assume that the weight of the truss is zero?

Obviously, the actual weight of the truss is not zero.  Why did we 
make this assumption, when we know it is not true?  How do you 
think it will affect the accuracy of our structural analysis?

We will assume that the top chord loading is more severe, 

then check the bottom-chord loading later.

  

When we load-tested the Grant Road Bridge in Learning 
Activity #1, we applied the load in two different ways—with a 
stack of books placed on the top chord and with a bucket of 
sand suspended from the floor beams.  Before we can define 
the loads for our structural model, we need to decide which 
of these two loading configurations to use.  As a general 
rule, a structural evaluation should be based on the most 
severe loading condition—the one that produces the highest 
member forces.  If the analysis shows that the truss is safe 
for the most severe loading, then the structure will certainly 
be safe for less severe ones.  Unfortunately, in this case, it is 
not immediately obvious which of the two loading con-
figurations is more severe.  The best we can do is to make an 
assumption and check it later.  For now, we will assume that 
the top-chord loading, shown here, is more severe.  

Having decided on the location of the load, we must 
now determine its magnitude.  In Learning Activity #2, we 
applied the equation W=mg to determine that the weight of a 
5-kilogram mass is 49.05 newtons.  When we placed the stack of books onto the top chord of the truss, the weight of 
the stack was supported on joints J, J’, K, K’, L, and L’.  We can reasonably assume that the weight of the books is 
distributed equally to these six joints.  Therefore, the downward force applied to each joint is
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Check Static Determinacy and Stability
Before we can use the equations of equilibrium to analyze this truss, we must first verify that it is statically 

determinate and stable.  The mathematical condition for static determinacy and stability is 

where j is the number of joints and m is the number of members.  Our truss from the Grant Road Bridge has 
12 joints and 21 members.  Substituting these numbers into the equation above, we find that 2j and m+3 are both 
equal to 24, so the mathematical condition for static determinacy and stability is satisfied.  Furthermore, we note 
that the truss is composed entirely of interconnected triangles, which confirms our conclusion that the struc-
ture is stable.

Calculate Reactions
On the free body diagram above, the forces RA and RG are the unknown reactions at Joints A and G.     

We know that the truss is in equilibrium; therefore, the sum of all forces acting on the structure must be zero.  
Since all of the forces—loads and reactions—are acting in the y-direction, only one of our two equilibrium 
equations is relevant to the calculation of reactions:

Since there are two main trusses, three 8.175N loads will be applied to each truss.  Since all of the loads  
are downward, and the bridge is supported only at its ends, we will add upward reactions RA and RG at   
joints A and G.  

A complete free body diagram of the truss looks like this:
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Since the structure, the loads, and the reactions are all symmetrical about the centerline of the truss, the two 
reactions RA and RG must be equal.  (The centerline of the truss is a vertical line passing through Member DK).   
Substituting RA = RG into the equilibrium equation above, we get

 

 

And since RA = RG, then

Calculate Internal Member Forces
We will use the Method of Joints to calculate the internal force in each member of the truss.  To apply this 

method, we will isolate a joint from of the structure, cutting through the attached members and exposing their 
internal member forces.  We will draw a free body diagram of the joint, then use the equations of equilibrium to 
determine the unknown member forces.  We will repeat the process for successive joints, until we have calculated 
all of the internal member forces in the structure.  

Joint A
We’ll start by isolating Joint A and drawing a free body diagram of it.  The free body 

diagram must show all forces acting on the joint.  Thus the reaction RA is shown, along with 
its known magnitude of 12.26N.  The member forces FAI and FAB are also included on the 
diagram.  Because we do not know the magnitudes or directions of these forces, we simply 
show them in variable form, and we assume their directions to be in tension.  To indicate that 
a member force is in tension, we draw the force vector pointing away from the joint, along 
the centerline of the member.  

Before we can write the equilibrium equations for this joint, we need to figure out what 
the angle θ is.  Actually, we don’t really need to know the angle itself; rather, we only really 
need to know the sine and cosine of the angle—sinθ and cosθ.  We can determine the sine 
and cosine directly from the geometry of the truss.  Note that Members AB, AI, and BI form a 
right triangle, with Member AI as the hypotenuse.  We can apply the Pythagorean Theorem to 
calculate the length, LAI , as follows:

Now we can apply the basic definitions of the sine and cosine to find sinθ and cosθ:
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We are finally ready to write the equilibrium equations for Joint A.  We will start with the equation for the 
sum of forces in the y-direction.  Assuming that the upward direction is positive, 

To write this equation, we had to represent the force FAI in terms of its x-component 
and y-component.  The y-component is FAI sinθ, and its direction is upward, so it is 
positive in the equilibrium equation.   The x-component is FAI cosθ; however, this com-
ponent is not included in the ΣFy equilibrium equation, because it does not act in the 
y-direction.

We can now substitute the known value of sinθ into the equilibrium equation, and solve for the unknown 
force FAI.

Because the answer is negative, our initial assumption about the direction of FAI was incorrect.  We assumed 
that FAI is in tension.  The negative member force indicates that it is in compression.  Thus our final answer is

 

Now we can write the equilibrium equation for forces in the x-direction.  Assuming that the positive direc-
tion is to the right, 

We know cosθ, and we have just solved for FAI.  We can substitute these values into the equilibrium equation 
and solve for FAB.  But be careful!  When you substitute FAI, don’t forget the minus sign.

Because the answer is positive, our assumption about the direction of FAB was correct.     
The final answer is
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QQ2
Why did we choose to do Joint A first?

Is there a reason why Joint A was a good place to start this analysis?  
What would have happened if we had started with a different joint? 

QQ3
Why did we choose to solve the y-direction equilibrium equation first?

Is there a reason why it was a good idea to solve ΣFy = 0 before 
solving ΣFx = 0?  

Joint B
At this point, we should analyze Joint B.  It has only three connected members, and we already know the inter-

nal force in one of the three (Member AB).  Thus there are only two unknown forces, and we will be able to solve 
for them with the two available equilibrium equations.

Again we draw a free body diagram of the joint, with all member forces assumed to 
be in tension—pointing away from the joint.   The known magnitude of the force FAB is 
included on the diagram.  The equilibrium equation for forces in the x-direction is

The equilibrium equation for forces in the y-direction produces an interesting result:

It should come as no surprise that this member has zero internal force.  When you load-tested the Grant Road 
Bridge in Learning Activity #1, you should have noticed that this member—the hip vertical—was slack.  It appeared 
to have no internal force at all.  Now we have verified our observation using the Method of Joints!

Joint I
It takes some careful thought to recognize that Joint I should be the next joint we 

analyze.  As the free body diagram indicates, this joint has four connected members 
and, therefore, it also has four internal member forces.  Note, however, that we have 
already calculated two of these—FAI and FBI.  Thus there are only two unknown forces, 
which we can calculate with our two equilibrium equations.
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QQ4
Why Joint C?

Why was Joint C the best joint to analyze at this point in the  
solution process? 

Note that all four of the force vectors are pointing away from the joint, even though we already know that 
one of them, FAI, is in compression.  The negative magnitude of FAI ensures that it is mathematically represented 
as a compression force. 

It is important to note that both angles labeled as θ on the free body diagram are exactly the same as the 
angle θ on the diagram of Joint A.  (If you can’t see that these angles are all equal, prove it to yourself by drawing 
the corresponding right triangles, just as we did for Joint A.)  Thus the values we calculated for sinθ and cosθ for 
Joint A are still valid here.

If we begin with the equilibrium equation in the y-direction, we will be able to solve for FCI directly:

Now we can use the second equilibrium equation to solve for FIJ:

Joint C
Next we will calculate the unknown member forces at Joint C.

 

 

 

  

 

 

 

  

Based on the free body diagram of the joint, we can write the two equi-
librium equations and solve for the two unknown member forces as follows:
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Joint J
The free body diagram of Joint J is shown at right.  Note that the 8.175N 

load at Joint J must be included on the diagram.  (Failure to put loads on the 
free body diagram is one of the most common errors in truss analysis.)  We 
can write the two equilibrium equations and solve for the two unknown 
member forces as follows:
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Summary of Structural Analysis Results
At this point, we have only analyzed half of the truss.  However, if we take advantage of symmetry, we can 

determine the internal forces in all remaining members without doing any further calculations.  When we 
determined the reactions RA and RG, we noted that these two forces must be equal because the structure, its 
loads, and its reactions are all symmetrical about the centerline of the truss.  The same principle holds true for 
internal member forces.  Because the structure, loads, and reactions are all symmetrical, the member forces 
must also be symmetrical about the centerline.  Members that are “mirror images” of each other have equal 
internal forces.  FGM and FAI must be equal; FLM and FIJ must be equal; FDJ and FDL must be equal, and so forth.  

So we’re done!  The results of the analysis are summarized in the table below.

Determine the Strengths of the Members
Now that we have calculated the force in each member, we must determine the corresponding strength of 

each member.  To do this, we will use the graphs we developed in Learning Activity #2.  We’ll start with the 
bars—the bottom chords, diagonals, and hip verticals.  The table above tells us what we have already observed 
in our Grant Road Bridge model—that all of the bars are in tension (except the hip verticals, which have zero 

QQ5
Can you apply the Method of Joints to calculate a member force?

Which joint should you analyze to determine the member force FDK?  
Solve the appropriate equilibrium equations to show that FDK=8.175N 
(compression).  

Members  Force  Members  Force  
AB, FG  9.81 N  (tension) BI, FM 0 N  
BC, EF  9.81 N  (tension) CI, EM 15.70 N  (tension) 
CD, DE 19.62 N  (tension) CJ, EL  12.26 N  (compression) 
IJ, LM 19.62 N  compression) DJ, DL  5.23 N  (tension) 
JK, KL  22.89 N  (compression) DK 8.175 N  (compression) 
AI, GM 15.70 N  (compression)    
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internal force).  Thus we need to determine the tensile strength of the bars.  All of the bars used in the Grant Road 
Bridge are 4mm wide.  Using the tensile strength vs. member width graph we developed in Learning Activity #2, we 
find the tensile strength of a 4mm bar to be 26 newtons, as shown below.
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Determining the tensile strength of a 4mm bar

Determining the compressive strength of a 10mm x 10mm tube that is   
10 centimeters long

Note, however, that all of the bottom chords, diagonals, and hip verticals are actually doubled 4mm bars.  Thus 
the tensile strength of these members is exactly twice that of a single 4mm bar, or 52 newtons.

Our structural analysis shows that all of the tubes—the top chords, the end posts, and the interior verticals—are 
in compression.  Thus we must determine the compressive strength of these members, using the strength vs. length 
graph we developed in Learning Activity #2.  The top chord members are all 10mm x 10mm tubes, and each has a 
length of 10 centimeters.  The strength of these members is approximately 50 newtons, as indicated below.
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QQ6
Can you determine the strength of a member?

What is the compressive strength of the vertical tube members (CJ, 
DK, and EL) and the end posts (AI and GM)?

QQ7
Can you calculate the factor of safety for a member?

Calculate the factor of safety for all remaining members in the truss, 
and add them to the summary table below (along with the member 
strengths not already recorded in the table).

Calculate the Factor of Safety
Once we know the strength of a member and the internal force it is actually experiencing, we can calculate 

its factor of safety.  For the bottom chord member CD, the factor of safety is:

For the top chord member JK, the factor of safety is

  
 

 
  

 

Members  Force  Strength  FS  
AB, FG  9.81 N  (tension) 52  
BC, EF  9.81 N  (tension) 52  
CD, DE 19.62 N  (tension) 52 2.7  
IJ, LM 19.62 N  (compression) 50  
JK, KL  22.89 N  (compression) 50 2.2  
AI, GM 15.70 N  (compression)   
BI, FM 0 N       --  52 --  
CI, EM 15.70 N  (tension) 52  
CJ, EL  12.26 N  (compression)   
DJ, DL  5.23 N  (tension) 52  

DK 8.175 N  (compression)   
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QQ8
Why are some truss members stronger than they need to be?

For example, Member CI is a doubled 4mm bar with a safety factor of 
3.3.  Had the structural engineer chosen to use a doubled 3mm bar for 
this member, the safety factor would still be 2.5.  The member would 
use less material; and because its safety factor would still be greater 
than 2.2, the overall safety of the structure would not be adversely 
affected.  Why did the structural engineer choose not to use a smaller 
member size?   

Evaluate the Structure
As the Town Engineer of Hauptville, you have finished what you set out to do—a complete structural evaluation 

of the main trusses of the Grant Road Bridge.  Yet the results of these calculations are just numbers.  They are of 
little use, until you study them, think critically about them, and draw meaningful conclusions from them.  

Once you have completed the summary table on the previous page, you should be able to make the following 
observations:

n Members JK and KL have a factor of safety of 2.2—the smallest of any member in the truss.  Since the failure of 
Member JK or Member KL would cause the entire structure to collapse, we can say that the factor of safety of 
the entire structure is 2.2.  

n Since 2.2 is obviously larger than 1, our analysis tells us that the structure will not collapse when the 5 kg mass is 
placed on the top chord.  Because the factor of safety is considerably larger than 1, we can have a high degree of 
confidence that the structure will not fail, even if we made some minor errors in construction or if the actual 
load is significantly larger than 5 kg. 

n Theoretically, the bridge would collapse if the mass of the stack of books at mid-span were increased to    
(5 kg)(2.2)=11.0 kg.  

n Many members of the truss have safety factors that are substantially larger than 2.2.  These members are actually 
much stronger than they need to be.

It is important to note that this structural evaluation is valid only for one particular loading.  If we change either 
the magnitude or the position of the load, the member forces and factors of safety will also change.
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 On an Actual Bridge Project

  Deflections are important too.

We evaluated the Grant Road Bridge by checking that each     

member in the structure can carry load safely.  On an actual     

bridge project, the engineer would also check to ensure that the deflections are accept-

ably small.  A deflection is the distance a structure moves when it is loaded.  A bridge 

always deflects when it is loaded.  On a well-designed bridge, these deflections are so 

small that they are imperceptible to drivers and pedestrians crossing the span.  If a bridge 

is too flexible, then drivers and pedestrians will feel its movement and will perceive the 

structure to be unsafe—even if its strength entirely adequate.  The engineer is responsible 

for ensuring not only that the bridge is safe, but also that the public perceives it to be safe.  

Thus the engineer carefully computes the structure’s deflections under various loading 

conditions and ensures that these computed deflections comply with the appropriate 

design codes. 

Bottom-Chord Loading
The analysis above was based on a number of 

assumptions.  Perhaps the most important of these was 
our assumption that placing the load on the top chord 
of the truss is more severe than suspending the load 
from the floor beams.  We now have the analytical tools 
to check this assumption.  Since the floor beams are 
attached to the bottom chords, loading the floor beams 
is essentially the same as loading the bottom chord 
joints of the truss.  Thus our revised structural model 
should have the three 8.175 N loads applied at the 
bottom chord, as shown below:
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Members  Force  Members  Force  
AB, FG  9.81 N  (tension) BI, FM 0 N  
BC, EF  9.81 N  (tension) CI, EM 15.70 N  (tension) 
CD, DE 19.62 N  (tension) CJ, EL  4.09 N  (compression) 
IJ, LM 19.62 N  compression) DJ, DL  5.23 N  (tension) 
JK, KL  22.89 N  (compression) DK 0 N (compression) 
AI, GM 15.70 N  (compression)    

Is bottom-chord loading more or less 

severe than top-chord loading?

If we repeat the structural analysis using this new loading condition, we get the following results:
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QQ9
Can you apply the Method of Joints to analyze a truss?

Use the Method of Joints to analyze the Pratt truss with bottom-chord 
loading.  Prove that the results in the table above are correct.

Note that moving the loads from the top chord to the bottom chord caused the internal forces to change only in 
Members CJ, EL, and DK.  In all three cases, the forces got smaller.  The forces in the most heavily loaded mem-
bers—the top and bottom chords and the end posts—remained unchanged; thus the overall factor of safety of the 
structure remains unchanged.  We can conclude that using the top-chord loading in Learning Activity #1 (and in our 
initial structural analysis) was entirely appropriate.  The bottom-chord loading is more realistic, because real bridges 
carry traffic loads on their floor beams; however, the top-chord loading is much easier to do and produces nearly 
identical structural analysis results.

QQ1 0
Can members with zero force be removed?

In the analysis above, Members BI, FM, and DK have zero internal 
force.  It would seem that the truss does not need these members to 
carry load, and we might simply remove them from the structure to 
save material.  Do you think these zero-force members can safely be 
removed from the truss?

QQ1 1
Can you analyze a different truss?

Select any truss from the Gallery of Structural Analysis Results 
(Appendix B), and calculate the internal forces in all of its members.  

Conclusion
In this learning activity, we applied concepts from geometry, trigonometry, algebra, and physics to calculate the 

internal forces in every member of a truss.  In doing so, you saw how math and science are applied to solve an 
important, real-world problem.  You also saw how data from laboratory experiments—the strength tests we did in 
Learning Activity #2—can be integrated into the solution of an engineering problem.  Most important, you learned 
to use an important analysis tool called the Method of Joints.   This technique isn’t easy!  It requires you to con-
struct and solve equilibrium equations—lots of them—while paying careful attention to the magnitudes and direc-
tions of forces.  Wouldn’t it be great if we could use the computer to do this work for us?   Well, we can.  In Learning 
Activity #4, we will use the West Point Bridge Designer software to analyze and evaluate a truss bridge. 
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Answers to the Questions
1) Why did we assume that the weight of the truss is zero?  We could include the self-weight of the bridge in 

our structural analysis, but doing so would greatly complicate the analysis.  In Learning Activity #1, we found 
that the mass of our Grant Road Bridge model is about 55 grams.   This mass is very small in comparison with the 
5 kilogram mass the bridge is designed to carry.  Including the self-weight in our analysis would change our 
calculated member forces by only about one percent.  For the sake of simplicity, we can ignore self-weight, and 
recognize that this assumption has a very small effect on the accuracy of the structural analysis.

2) Why did we choose to do Joint A first?  At any given joint, we can write two equilibrium equations—ΣFx=0 
and ΣFy=0.  With only two available equations, we can solve for only two unknown member forces at each joint.  
At the start of the solution process, Joint A has just two unknown member forces—FAB and FAI .  Joint G is the 
only other joint in the entire truss with only two unknown forces.  All of the others have three or more.  Thus 
the solution process should start at either Joint A or Joint G.  

Note that the reaction force RA is also applied at Joint A.  Had this force also been unknown, it would have 
been impossible to solve the equilibrium equations at this joint—there would have been three unknowns and 
only two equations.  That’s why it is generally necessary to solve for reactions before we use the Method of 
Joints to calculate member forces. 

3) At Joint A, why did we choose to solve the y-direction equilibrium equation first?  At Joint A, the x-direction 
equilibrium equation has two unknown member forces, FAB and FAI .  Had we written this equation first, we 
would have been unable to solve for either of the unknowns immediately.  The y-direction equation includes 
only one unknown force, FAI .  By solving ΣFy=0 first, we were able to solve for FAI directly.  Then, when we wrote 
ΣFx=0, we could substitute the known value of FAI  and solve for FAB .  At any given joint, we can often (but not 
always) avoid the chore of solving two equations simultaneously by identifying an equilibrium equation that has 
only one unknown member force—and solving it first.

4) After solving for the unknown member forces at Joints A, B, and I, why did we choose Joint C?  At Joints A, B, 
and I we calculated the member forces FAB , FAI , FBC , FBI , FCI , and FIJ .  At this point in the solution process, we 
already knew two of the four member forces at Joint C—FBC and FCI .  Only FCD and FCJ were unknown.  So we 
selected Joint C because it had only two unknown member forces, which could be solved with our two equa-
tions of equilibrium.  As a general rule, when using the Method of Joints to analyze a truss, always select a joint 
with only two unknown member forces as the next step in the analysis.

5) Can you apply the Method of Joints to calculate the force in Member DK?  The 
best joint to analyze in order to determine the member force FDK is Joint K.  The free 
body diagram of this joint is shown at right.  From this diagram, we can calculate FDK 
directly from the y-direction equilibrium equation
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6) Can you determine the strength of the verticals and end posts?  To determine the compressive strength of the 
verticals and end posts, we will use the strength vs. length graph we developed in Learning Activity #2.  The verticals 
are 10mm x 6mm tubes, and each has a length of 12.5 centimeters.  Thus the compressive strength of the vertical 
tubes is 43 newtons, as indicated below:

Determining the compressive strength of a 6mm x 10mm tube that is 12.5cm long

The end posts are 10mm x 10mm tubes.  Since they are diagonal members, we must calculate their length using 
the Pythagorean Theorem:

As the graph below indicates, a 10mm x 10mm tube with a length of 16 centimeters has a compressive strength 
of 42 newtons.
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7) Can you calculate the factor of safety for all of the remaining truss members?  Once the internal member 
force and strength are known for each member in the truss, the corresponding factor of safety can be calculated 
using the equation

The results are summarized in the table below.

Members Force Strength FS 
AB, FG 9.81 N (tension) 52 5.3 
BC, EF 9.81 N (tension) 52 5.3 
CD, DE 19.62 N (tension) 52 2.7 
IJ, LM 19.62 N (compression) 50 2.5 
JK, KL 22.89 N (compression) 50 2.2 
AI, GM 15.70 N (compression) 42 2.7 
BI, FM 0 N       --  52 --  
CI, EM 15.70 N (tension) 52 3.3 
CJ, EL 12.26 N (compression) 43 3.5 
DJ, DL 5.23 N (tension) 52 9.9 

DK 8.175 N (compression) 43 5.3 
 

 

  
 

 

8) Why are some truss members stronger than they need to be?  For example, why did the structural engineer 
not use a doubled 3mm bar for Member CI, rather than the doubled 4mm bar she specified in the design?  
Making this change would not adversely affect the overall safety of the structure; yet reducing the member size 
would clearly use less material.  And using less material ought to lower the cost of the structure, right?  

Member CI and a number of other members in the Grant Road Bridge are “too strong” because the struc-
tural engineer chose to use only a limited number of different member sizes in her design.  In this case, she 
used only three—the two tubes and the doubled 4mm bar.  She chose the 4mm bar so that the tension mem-
bers with the largest internal force—CD and DE—would have a factor of safety greater than 2.  Then she simply 
specified the same 4mm bar for all of the other tension members, knowing that this size would be more than 
adequate for members whose internal forces were lower.  

To understand why the engineer chose to use a limited number of member sizes, just think about your own 
experience building the Grant Road Bridge.  Suppose the engineer had designed every member with a safety 
factor of exactly 2.  Most likely, each main truss would have required five different bar sizes and five different 
tube sizes.  With so many different sizes, it would have taken you much longer to measure, cut out, and assem-
ble the members.  The connections would also have been much more complicated, and you would have been 
more likely to make construction errors—to put a 3mm bar where a 4mm bar is supposed to be used, for 
example.  You would have saved some material, because every member would only be as strong at it absolutely 
needs to be.  But this small reduction in material cost probably would not have been worth all of the extra work.  

The same is true for the construction of a real structure—there can be substantial cost saving in using a few 
standard member sizes, because doing so can greatly simplify the fabrication and construction processes.
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9) Can you apply the Method of Joints to analyze a truss?  To analyze the truss with bottom-chord loading, follow 
exactly the same procedure as you did for the truss with top-chord loading.  You will find that the calculation of 
reactions, and the analyses of Joints A, B, and I are exactly the same as for the top-chord loading.  Starting at Joint C, 
however, the two solutions differ.  The truss with bottom-chord loading has an 8.175N load at Joint C, as shown in 
the free body diagram.  As a result, the x-direction equilibrium equation remains the same, but the y-direction 
equilibrium equation changes:

Next we analyze Joint J.  In this case, the absence of an 
external load at the joint causes the y-direction equilibrium 
equation to change.

Finally we analyze Joint K to determine FDK .
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10) Can members with zero force be removed?  Members BI and FM could be removed from our model of the 
Grant Road Bridge with no adverse consequences; however, they could not be safely removed from the actual 
highway bridge.  In the actual bridge, Members BI and FM serve an important structural function—they support 
the floor beams attached to the truss at Joints B and F.  These floor beams help to support the bridge deck and 
transmit vehicular loads from the deck to the main trusses.  Thus, in the actual bridge, Members BI and FM are 
in tension and are essential to the structure’s load-carrying ability.

Member DK could not be safely removed from either the model or the actual bridge.  Without Member DK, 
we would have just one continuous member from Joint J to Joint L—there would be no reason for a joint at K.  
This new member—let’s call it Member JL—would be twice as long as Member JK or Member KL.  As a result, 
Member JL would be much weaker in compression than JK or KL.  (Recall from Learning Activity #2 that com-
pression strength decreases substantially with increasing length.)  To keep Member JL from buckling, a con-
siderably larger tube would be required.  Thus, even though Member DK has no internal force, it effectively 
strengthens the structure by dividing Member JL into two shorter, stronger compression members.

It is also worth noting that, in an actual bridge, the internal force in Member DK would not be zero.  It 
would actually carry part of the self-weight of Members JK and KL, resulting in a small compressive internal 
force.  In our analysis, the internal force in Member DK is zero only because we assumed the self-weight to be 
zero.

11) Can you analyze a more complex truss?  The Gallery of Structural Analysis Results (Appendix B) provides 
the calculated internal member forces for a wide variety of common truss configurations.  


